-

AD-A232 693

NAVAL POSTGRADUATE SCHOOL
Monterey, California

DTIC

ELECTE

MAR12 1991,

THESIS

USER INTERFACE
TO AN

ICAISYSTEM THAT TEACHES DISCRETE MATH

by

Roy Keith Calcote & Richard Anthony Howard

Thesis Advisors;

June 1990

Hefner & Shing

Approved for public release; distribution is unlimited.

91 P 3 06

009

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
UNCLASSIFIED | /P NESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release,
distribution is unlimited

[Ta. REPORT SECURITY CLASSIFICATION

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

4. PERFTORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
e& NAI\{IEPOF PERSORMINSG l_Cl)RGlANIZATION th}lam 7a. NAME OF MONITORING ORGANIZATION
aval rostgraduate 5choo ! applicadre, Naval Postgraduate School
MA and CS Er
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRES S (City, State, and ZIP Code)
Monterey, CA 93943-5000
[8a. NAME OF FUNDING/SFONGORING [80. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if appiicable)
8c. ADDRESS (City, State, and ZIP Code) 0. SOURCE OF FUNDING NUMBERS
PROJECT TASK WORK UNIT
ELEMENT NO. | NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)
USER INTERFACE TO AN ICAI SYSTEM THAT TEACHES DISCRETE MATH

12, PERSONAL AUTHOR(D) -
Calcote, Roy, K., and Howard, Richard, A.

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) | 15. PAGE COUNT
Master’s Thesis FROM 10 June 1990 368
16. SUPPLEMENTARY NOTATION
Tlhe views expressed in this thesis are those of the authors and do not reflect the official policy or position of the Department of Defense or the
U.S. Government

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP susoroup | Artificial Intelligence, Intelligent Computer Aided Instruction,
ICAI Interface ,

mﬁ (Continue on raverse if necessary and identify by block number)

The main thrust of this thesis is the design of a usable Intelligent Computer Aided Instruction (ICAI) user
interface that does not use a natural language processor and runs on a personal computer. Discrete Mathe-
matics is the knowledge domain for this project and the Discrete Math Tutor (DMT) is the name of the tutor- 4~
ing system. The DMT will allow the average student to benefit from a tutoring system now and not have/(
wait until the artificial intelligence researchers solve the natural language interface problem.

1

20__DISTRIBUTION/AVAILABILITY OF ABSTRACT . 21 AESTPACT GLCUMITY CLASTT ent o
A UNCLASSIFIED/UNULIMITED [SAME AS RPT. [J DTIC USERS| UNCLASSIFIED

22a_NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code] 22¢. OFFICE . SYMBOU .
Kim Hefner and Mantak Shing (408) 646-236 MA and CS ;

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are ob-solete UNCLASSIFIED
1

SECURITY CLASSIFICATION OF THIS PAGE
6a. (continued) Computer Science and Mathematics Departments

/

Accession For
NTIS ORAgI of

DTIC TAB 0
Unanncunced d
Justification

By

Avallability Ccdes

E—-—IA'V:: 1l and/or
ist ; Special

ysOTyY
n?sPF-‘ﬂf-u }
3

,/

SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

ii

Approved for public release; distribution is unlimited.

USER INTERFACE TO AN
ICAISYSTEM THAT TEACHES DISCRETE MATH
by
Keith Calcote
Lieutenant, United States Navy
B.S., Texas Tech, 1983
and
Richard Anthcny Howard
Captain, United States Army
B.S., United States Military Academy, 1982

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN APPLIED MATHEMATICS
MASTER OF SCIENCE IN COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL
June 1990

Authors: ’Z/l@' l
-z me/

Approved By: 7 K1m Hefne/ Co Thesm Advisor

7

/ " Mantak Shing,, }_‘.o;Thesi\s Advisor

Harold M. Fredricksen, Chairman,

74 ‘/LDWt oﬁ%athemaucs

% obert B. Mc\éhee, Chairman,

partmem of Computer Science

iii

ABSTRACT

The main thrust of this thesis is the design of a usable /nrelligent Computer Aided
Instruction (ICAI) user interface that does not require a natural language processor
and runs on a personal computer. Discrete Mathematics is the knowledge domain for
this project and the Discrete Math Tutor (DMT) is the name of the tutoring system.
The DMT will allow the average student to benefit from a tutoring system now and
not have to wait until the artificial intelligence researchers solve the natural language

interface problem.

v

II.

IL.

TABLE OF CONTENTS

INTRODUCTIONciiiiiiniiiiiriiiniinenassinseiissssessessessesssssssssesssssessssssassessessesseens 1
A. TOOMUCH TO EXPECTcccoomiiiiinenintininnnereeeesanerssesessessasesessessesesses 1
B. ICAIFEATURES ..ottt saen e sseneseesas 2
C. THE INTELLIGENCE PART OF AN ICAISYSTEM.....cccoveevenierrenreninnes 4
D. THE DISCRETE MATH TUTOR (DMT)....ccvvivinivierenrenirneniarsensensesssseesessenes 4
HOW TO WRITE A LESSON ...ttt et ssenasassessssassssesssnessons 6
A. INTRODUCTION ...ccooiiirintiirnnnieniniiiecstsiesssssssesessesssssensssassesssssassesassssssons 6
B. CREATING TEXT LESSONScoiinininnieireiescsresessteessessessessennens 6
C. FORMATTING THE LESSONcccciiiiniiiiiniiniinncciteeeenesassessesseseensnsesneons 7
D. CREATING TEXT EXAMS ..ot ssenesesesssssens 9
E. CREATING GRAPHICS LESSONS AND EXAMSccoivirmrnnenrcneneenn. 10
F. MEMORY CONSIDERATIONScccovurimmimiteeesestseeeensssesesesessesensens 11
G. ADDING GRAPHICS TO LESSONS ..ottt seensesescsaesenns 13
H. ADDING LESSONS, EXAMS AND TOOLS TO THE INTERFACE......... 14
USERS GUIDE.........oiiiiiiiiiiiniceneesssiisenesecstsessessaseesssseseseasasesensssssssessans 15
A, INTRODUCTION ...coooiiiiiiiitiiincneniiiincesestneestseatrsesessssassnaesessasssseseseensss 15
B, BEGIN .ot sesest e seesessssssssesssessasasassssssssasssesnesases 17
C. MANEUVERING INSIDE A LESSON......ccviniiniriinenineisreneseeseenenenne 20
D. INFORMATION. ..ottt crerecrsssissees s essseenesesstesssessssssanessesenes 21
E. EXAMS ettt sn b st e 24

F. TOOLS ..ottt sttt st sr e sscsaesess s st sbs et en s e s smaone 26

1 DIAETAIMS ...ectieienrieireeresiestne ettt sstesansssessrasstassanesseesessnsasnesneanses 27

2. REfEIENCE ..cooiiiiiiriiniintce ettt s sene s sasssassasesssesaasans 29

K T 1 (111 F: 1 () OO OO 33

4. Problem SOLIVET ...t v sesenesessssees 34

G. NOTEBOOK......cociirirnrierneecsssnssississstestesssestestsnsossessessesssessssssssssnsssesssesen 37

H. QUIT ittt ss st srt s besbesesaas s saesbestsnsesesusnns 38

IV. FURTHER WORKccoinititntiininientensineneiei s sn s ssessessssssssas 40
A. INTRODUCTIONccoviiiiirinimnniniieniini s ssssssossssssasssesssssnes 40

B, TESTING. ..ottt st sasess st esssssssassssssnassssssosessesaes 40

C. INTERFACE EXTENSIONS ..ottt ssress s seneneens 41

D. THE NEXT THREE MODULES........cccccovminiiiiinininniieerenirsiesnsseenns 43

E. WORKLOAD ...ttt ssas s s s snss s s 43

F. CONCLUSBIONS ...ttt isesssissessessesisessesssssesssssesesssssesas 45
APPENDIX A REQUIREMENTS DOCUMENTcocicvirierireneeneetestieenreenneens 47
A, INTRODUCTION ...t s s et ese e sess s 47

B. ENVIRONMENTAL CHARACTERISTICScccccevivimiirmrnrininieeniennenns 47

1. Minimum Hardware Required.........cccocviiininiinininnnnniniiniencenecennenne 47

2. Target AUdIENCE......cccvirvirrreitiiin et sre e e enes 47

C. OVERVIEW ... s sesisssssessss susssasce 47

vi

STORY-BOARDooitiitiiiiiiititeee st ettt e et 48

L. Opening SCIEEM.....coiviitiiiiiiieiiiiiticri s 48
2. "Begin" Pop-up Menu...........ccciiiiiiiiicniiiiiiiniiiceee e cnene 49
3. "Start a Lesson" Pop-up Menu..........ccoceveiiiiinieneeninncnreeneennnnsreneneanes 50
4. "Return to Last Session” Pop-up Menuc.cccooovevmvnieninencciniennnnne. 51
5. "Information"” Pop-up MEnUcceceriiiiinniiniiinieninienicsieenncenneennens 52
6. "Definitions" POp-up Menuccccceevrmrctininiiecnennreneeseeeceeeneenenee 52
7. "Examples" Pop-up Menu.........ccccoviiiiiininiiiiie s 54
8. "Theorems" Pop-up Menuccccvuiiiiiininiiiiiiiiiinnini v 55
9. "Pictures” Pop-up Menuccoviiiiiininiiiice e 57
10. "Algorithm" Pop-up Menu........ccoccciniinininiincninencceene st e 58
11. "Calculator” Pop-up Windowccoeeviiieiniiinnieneneninneneesesesserens 60
12, "Notebook" Pop-up Menu.......c.ccoiivniiivnnniiiinctce e 61
13, "Quit" Pop-up Menucooiviiiiiniiii e 62
14, "Help" Pop-up MenU.........ocoviiiiiiiiinieneiinestcninsenreee st sressesassassessensens 63
15, General NOtES.......cvveiiiiririiiineiie it st snee e saens 63
CONSTRAINTS & GOALS ..ot 65
1 CONSITANS ..ovveiiceci e e s 65
2. GOlS e st 65
LIFE CYCLE CONSIDERATIONSc.coomiiiiiiicnriene et 65

vii

APPENDIX B DESIGN DOCUMENTcccoviiriiiiencnie et 67

A. INTRODUCTIONcooimiiiirieiiiiieenteesreesessnesresssssesssnssneesesenessesseeseseens 67

B. SOFTWARE DESIGN METHODOLOGY (SWD)......cccooivieiiniiineenne 67

C. SWD APPLIED TO THE USER INTERFACE...........c.cccovvvvnnniirinicnnnes 68

1. The DFD ...ttt sr et e 68

2. The Data DiCtiONary......cccccooiiiiniimriniininciire oo e s eonee 73
APPENDIX C HOT KEY SUMMARYccoiiiniiiniiininiincnene et snsnsnns 80
A, BEGIN ettt e et e s 80

B. ESCAPE.. ...ttt e s b ea b 80

C. EXAMS ettt et s e s sas b 80

D. HELP ettt e s s 80

E. INFORMATION......ccccoevimmmirriiiniiiniiiieininc et sssiesnssesssnsrssnes 81

F. NOTEBOOK......cccoiinititiin et ss s sresnes 81

G, TOOLS st et st s b b s s et e 81

H. QUIT ..ttt et sttt st e sa s sa s st st em st eabesas 81
APPENDIX D INSTALLATION PROCEDUREScccoooviimiiniiierinccienns 82
APPENDIX E THE CODE: FILE "DMT.C" ...ttt 84
APPENDIX F THE CODE: FILE "LSN.C"....cccootviiiiiiiniiiiiiicenececeneneennens 119
APPENDIX G THE CODE: FILE "UTIL H" ..o 136
APPENDIX H THE CODE: FILE "CALC.C".....ccociniiiiiiiiinine i 173
APPENDIX I THE CODE: FILE "LINK.C"......cccoviiiimiiiniiiiee s 195
APPENDIX J THE CODE: FILE "TXTMOD.C"cccccoiiviiininniiiiien 213
APPENDIX K THE CODE: FILE "VENN.C"cocotiiiiiniiciinenceeeseeneenens 221

viii

APPENDIX L THE CODE: FILE "PRINT.C".......ccooiiiiniiininenecee s 244

APPENDIX M THE CODE: FILE "EXAM.C"..........ccooiiiiiiintrnn e 247
APPENDIX N THE CODE: FILE "VENNINFO.C".......ccccoeoeiirininenrcncieee 273
APPENDIX O THE CODE: FILE "RULES.C".......c.ccoooiniiiiiiinieenenecieneeieene 289
APPENDIX P THE CODE: FILE "TABLE.C"cccoovvitvvininnnninennrssenrensnnnns 298
APPENDIX Q THE CODE: FILE "GLOBAL.H"ccccccociinniinennnnneiees 338
APPENDIX R THE CODE: FILE "VIDEO.H"..........cccccevtriniinicniniresenienene 340
APPENDIX S THE CODE: FILE "FLASH.C"...........ooceiierrinrcernenenreanes 342
APPENDIX T THE CODE: FILE "HELP.H"cccooooiiiiiiiiecneie e 353
LIST OF REFERENCESccoiiniiiiiiiiicn ettt et s 355
INITIAL DISTRIBUTION ...ttt ettt e st saveeraan 357

iX

I. INTRODUCTION

A. TOO MUCH TO EXPECT

During the late 1970’s, the United States Army experienced a phenomenon
called Zero Defect Performance. This phrase means that commanders accept no
mistakes. Because of this policy, valuable Army personnel lost their careers and
were forced to retire early. Since then, saner minds have prevailed and a new policy
is in place. The Army calls the new policy the Band of Excellence. The Band of
Excellence refers to an imaginary zone of acceptable performance. Instead of 100%
efficiency all the time, the Army considers any unit that stays within this imaginary
performance zone as combat ready.

The Zero Defect Performance idea is analogous to the evolutionary process of
Intelligent Computer Aided Instruction (ICAI) systems for the last 20 years. Many
experts agree that since their inception, /CAl systems have not performed at 100%
efficiency (Dede, 1986, pp. 329-353). R. Good describes three reasons why ICAl
systems have not proliferated in the last decade:

There Exists No Common Database of How a Student Learns.

There Exists No Common Database of How a Student Learns.

There Exists No Efficient Natural Language Processor.

Machines can not learn. (Good, 1987, pp. 325-342)

A fourth reason for the lack of acceptance is that most of the existing systems

Eal S o

like SOPHIE, STEAMER and GUIDON all run on large mainframes or specialized
equipment (Weneger, 1986, pp. 12-45). Most students have no access to these
types of machines. Thus, the state-of-the-art ICAI systems are locked away in

research laboratories and away from the average student.

It is time for the evolution of /CAIl systems to enter the era of the Band of
Excellence. Instead of insisting that /CAl systems keep getting better, experts must
decide on the level of acceptable performance. For example, since experts may not
solve the natural language processor problem in the near future, perhaps it is not
necessary to have an efficient natural language processor as part of the user interface
to any [/CAIl system. Further, these acceptable programs must run on machines that
are available to the common user.

The main thru. of this thesis is the design of a usable ICAl user interface that
does not require a natural language processor and runs on a personal computer.
Discrete Mathematics is the knowledge domain for this project and the Discrete
Math Tutor (DMT) is the name of the tutoring system. The DMT will allow the
average student to benefit from a tutoring system now and not have to wait until the

artificial intelligence researchers solve some tough protlems.

B. ICAIFEATURES

There are many ways to develop ICAl systems. However, most experts agree
that every /CAl program must contain four basic parts: an Expert Module, a Studrnt
Module. a Tutorial Module and the User Interface Module. Figure 1 shows a generic

representation of any /CAI system. (Duchastel, 1989, pp. 95-100)

Expert Model

Student Model Tutorial Model

Interface Model

Figure 1 -General ICAI Model

The Expert Module is the problem solver. It contains all the information
conceming how to solve problems in the subject domain and provides answers to
student queries based on the subject domain. The Student Module contains all
information about the student’s performance level and reasoning strategies. It stores
a list of a student’s misconceptions and sub-optimal performance strategies that he
uses to solve problems. It also stores any skills the student may already posses.
The Tutorial Module contains instructional strategies to apply to each student based
on the information contained in the Student Module. It makes inferences about the
student’s misconceptions and leaming needs, then selects the best instructional
treatment for each student. The User Interface Module allows the student to interact

with the other three modules. (Seidel, 1988, pp. 235-256)

C. THE INTELLIGENCE PART Or AN ICAI SYSTEM

The degree of Learmner Control inherent in a ICAI system decides the
intelligence of that system. Leamer Control means that the student has control of
the direction of the lesson path. In other words, the student is not dependent upon
the software for each point in the lesson plan. LOGO is a good example of a system
that provides complete Learner Control to the student (Jones, 1985, pp. 517-526). In
LOGO, all leaming is based on discovery. There exists no teaching strategy. The
student merely tries what he thinks will work and makes corrections based upon the
output of the program.

However, in intelligent tutoring systems, some teaching must occur. Thus, the
tutoring system must dictate certain aspects of a lesson. When the tutoring system
completely dictates the entire lesson and gives no control to the student, the system
is simply called Computer Aided Instruction (CAl). Drill programs such as typing
tutors and math skill programs are examples of CAl systems. (Duchastel, pp. 93-98)

An ICAIl system requires a compromise between CAl and complete Learner
Control. The compromise is called a mixed-initiative environment (Duchastel, pp.
93-9R). The mixed-initiative environment provides some control to the student
concermning how a lesson progresses; but, also, provides control to the tutor during
key points in a lesson. Therefore, a tutoring system must implement a mixed-

initiative environment in order for it to be classified as intelligent.

D. THE DISCRETE MATH TUTOR (DMT)

The DMT provides a simple mixed-initiative environment. The environment
contains two parts. The first part presents a standard CAl lesson to the student.
The DMT presents each lesson as pages on the screen. The student is allowed to

page up, page down, and even view a particular page in a lesson.

The second part provides the mixed-initiative environment. From inside the
lesson, the student may access the DMT user interface. The DMT user interface
contains the following functionality:

1. Provides the user with the ability to print or save to disk any definition,
algorithm or example in the DMT.

2. Provides the user with the ability to run any algorithm in the DMT on his own
data.

3. Provides the user with other tools that aid the leaming process.

These three functions allow the user to stop the lesson he is currently working
on at any time and pursue topics of interest. For example, during a lesson a user may
find a term he does not remember. All he has to do is access the DMT user interface
and look up the definition of the unknown term. Further, during a problem solving
session, a user can access the user interface’s algorithm section and determine if his
answer is correct. Or, the user can adjust the parameters of an example given in the
lesson and view the resulting change. Finally, the user can access any tool provided
by the lesson author that enhances the subject domain.

These three functions provide a simple, but effective, mixed-initiative
environment that allows a user to learn discrete math. Further, the DMT runs on one
of the IBM PC or compatible computers that are prodigious throughout the academic
community.

The DMT's mixed-initiative environment places the ICAI system into the
Band of Excellence. Granted, the DMT’s representation of the Expert Module, the
Student Module and the Tutorial Module is unsophisticated at this time. However,
the DMT is available now to the average student on a computer system that is

readily accessible.

II. HOW TO WRITE A LESSON

A. INTRODUCTION

The tutorial interface is designed so that easy use is achieved. Step-by-step
instructions are provided for adding either lessons or question and answer sessions
to the tutorial interface. An explanation of the use of the interface is provided in
Chapter II: Users Manual. A basic knowledge of a word processor is required to
take advantage of the interface so as to create a text type tutorial in any given
subject. Producing graphic type tutorials or graphic drill sessions requires that the
graphics lesson be independent of the interface. Programming experience in a

computer language such as C or Pascal is necessary to create graphics lessons.

B. CREATING TEXT LESSONS

A lesson can be created with many common word processors. WordPerfect 5.0,
WordStar 4.2, or MultiMate 3.30 are a sample of those which may be used. The
word processor or text editor that is used must be able to create ASCII (American
Standard Codes for Information Interchange) files.

In WordPerfect 5.0 text files are created by using the text infout key (Ctrl-F5)
(Kelly, 1988, p.498). MultiMate 3.30 requires that a document be converted to ASCII
by using the advanced utilities menu, file conversion option. (Multimate International
Corporation, 1984, p. A-3-45). The ASCII format was chosen so that a high degree of
portability is assured, and that ease in creating a tutorial is achieved.

A single tutorial subject may be up to 100 pages long. Each page will be no longer
than 19 lines. The first line, which is automatically created by the interface, will

contain the page number. The remaining 18 lines may be used for the lesson text.

Each line may be up to 76 columns in width. The limitation for the number of lines and
the column width is so that the page will fit into a window which is 19 rows by 80
columns. The window in which the pages are placed is created by the interface.

Each page in the lesson should be separated by a page break. The page break
created by the word processor should be interpreted in the ASCII conversion process
as the hexadecimal number OC. The page break, 0C hexadecimal, is also known as a
form feed (Hansen, 1989). If the lesson writer prefers to create a lesson with no page
breaks, the lesson format program txrmod.exe will size the lessons to the correct
length of 18 lines. If txrmod.exe is relied upon to build the pages, then it is possible
that the material will not be presented in the manner in which the lesson-writer

intends.

C. FORMATTING THE LESSON

After a lesson is developed, the lesson format program fxfmod.exe must be
executed so that the interface and the lesson are properly aligned. For example,
suppose that a lesson has been written with a word processor and given the file name
lesson.ORG. Next lesson.ORG is converted to text format (an ASCII file) and
assigned a new name: lesson.ASC. Now the lesson is formatted with the following

command:

txtmod lesson.ASC lesson. TXT

lesson.ASC is the input file and /esson.TXT is the output file to the executable program
txtmod. [lesson.TXT is the file that will be used by the interface to present the lesson.

This process is summarized in Figure 2.

The input file and output file must have different names. If the names were the
same, the executable file txtmod.exe will try to overwrite the input file as it is being
read and will produce unpredictable results. As this is the case, txtmod.exe will not
allow the same name for the input and output files.

Other than the output file, another file called the length file is generated by
txtmod.exe. The length file is created automatically and without effort on the part of
the user. The length file consists of an array which contains the number of bytes
between page breaks. It is the information which is stored in the length file that
allows the interface to provide for next page, previous page, and individual page

selection. The length file is given the same name as the output file but is given the

extension LEN .
FILE NAME

1. Write the lesson with save to N

a word processor - lesson.ORG
2. Convert the lesson convert to .

to an ASCII file - lesson.ASC
3. Format the lesson

with the command produces lesson. TXT
txtmod lesson.ASC lesson.TXT lesson.LEN

Figure 2 -Process of Formatting a Lesson

D. CREATING TEXT EXAMS

The interface has provisions for presenting text type question and answer exams.
The exams may be of type true/false and/or multiple choice. An exam bank is a file
which may consist of up to 100 questions. The student will be allowed to select any
number up to the number of questions in the exam bank. The questions will be
presented in random order. At the desire of the lesson-writer, explanations may be
provided for the questions.

An explanation bank is a file which contains explanations for the corresponding
questions. Providing an explanation bank is optional. But, if an explanation bank is
given, an explanation page must be provided for each question in the corresponding
question bank. This is required so that the questions and explanations are properly
aligned. If it is preferable to provide explanations for some questions and not for
others, a statement such as "Explanation not provided for this question” should be
used for the appropriate page in the explanation bank.

Producing questions, answers, and explanations with the interface is similar to
constructing lessons except that a specific forat must be used to create a question.
Questions and explanations may be at most 18 lines long. As shown in Figure 3,

correct answers to questions must be bracketed with the @ (at sign) symbol.

Is this the correct format for a question?

@yes@

no

Figure 3 -Question Format for Exam Bank

Notice that no blanks are allowed between the @ (at sign) and the correct
answer. The interface, through use of the executable program Q & A.exe , will strip
the @ brackets from the correct answer and present the correct answer so that it is
aligned with the other answers. This is shown in Figure 4. The @ is required so that
the correct answer is highlighted (reverse video) in response to an answer proposed
by the user (see Figure 15). A word processor such as those mentioned above should
be used to create ASCII files for both the question bank and the explanation bank.
Then the lesson format program txtmod.exe must be executed on each of the ASCIH
files so that the interface and the exam are properly aligned. As with the lesson,

length files are created by txtmod.exe for both the question and explanation files.

Is this the correct format for a question?

yes
no

Figure 4 -Question Presentation in the DMT

E. CREATING GRAPHICS LESSONS AND EXAMS

In the introduction, it was noted that a graphics lesson must be independent of the
interface. That is, any graphically oriented lesson must be provided in an executable
file. This is because there are no special provisions or restrictions in the interface for
producing graphics. Also, because graphical lessons are independent of the interface,

the lesson-writer may produce graphics lessons with a computer language of choice.

10

As illustrated in Figure 17, a graphics lesson is not displayed in the lesson
window that is provided with the interface. This is because the windows and menus
created by the interface are developed in the text mode instead of the graphics mode.
Consequently, a program that produces graphical lessons or exams must first identify
the graphics hardware installed on the computer. Next, the program must clear the
text screen and initialize the griphics system. After initializing the graphics system,
presentation of the graphically oriented lesson is possible. It should be noted that
since a graphics lesson is not presented in the interface window, the
aforementioned display restrictions of 19 rows by 76 columns do not apply.

After the lesson is presented and it is desired to return to the interface, the
graphics program must clear the graphics device from the system. After clearing the
graphics device, the text mode must be reinstalled. The interface will then
reestablish the windows and menus and return the user to the lesson from which he
came. Examples of graphic type lessons and exams are provided in Chapter 11I: Users

Guide.

F. MEMORY CONSIDERATIONS
The DMT was designed to run on a personal computer (PC) with 640 kilobytes of

RAM. Thus, 640K is an upward limit for how large the program can grow. The DMT
currently uses 2(+ K of RAM while executing. The fact that only one of four modules
of the DMT has been implemented makes the remaining 440K of RAM a critical
commodity.

With this is mind, the DMT was designed with a special programming technique
used in large programs called /ayering. It involves converting the major functions of a
program into executable files. Instead of the main module of the interface calling

individual C Language functions, the main module actually suspends operation of itself

11

and calls other layered programs. Once the layered program finishes executing,
control is retumed to the DMT’s main module. Thus, as long as the main module and
any other layered program together do not exceed the 640K upper bound, the number
of layered programs that can be added to the complete program is unlimited.

The DMT consists of a main program and a number of layered programs. The
main module is called dmt.exe and is the actual interface to the program. When the
programn begins, dmt.exe always exists in RAM.

The key layered program in the tutor is called Isn.exe and is the executable file
what displays lessons to the user. This layered program is critical because it will
usually always co-exist in RAM with the dmt.exe interface program since displaying
lessons is the main function to the tutor.

As shown in Figure 5, both dmt.exe and Isn.exe combine to use 200K of RAM.
Therefore, only 440K of RAM is available for all other layered programs in the tutor.
This seems to be sufficient since all the other layered programs that already exist

inside the tutor are well below the 440K maximum.

12

RAM
640K
FREE RAM
- FOR LAYERED
PROGRAMS
200K
LESSON
PROGRAM
100K
INTERFACE
PROGRAM
0K

Figure 5 -DMT Memory Model

G. ADDING GRAPHICS TO LESSONS
The DMT utilizes Mike Smedley’s windowing package called the C Extended

Library (CXL) (Smedley, 1989). As mentioned previously, CXL does not support

both graphical and textual modes simultaneously. If a picture is required to enhance a

13

lesson, that picture is included as a tool inside the tutor interface. The lesson text
must inform the student to locate the needed image inside the tool box for viewing.
Thus, all pictures required in a lesson become small executable files, layered
programs (see previous section), that are called from the "TOOLS" pull-down menu

inside the DMT.

H. ADDING LESSONS, EXAMS AND TOOLS TO THE INTERFACE

Adding lessons, exams and tools to the interface is a two step process. First, the
author must create these items. The previous sections in this chapter discuss this
process. Second, the author must add each new item to the menuing system
presented to the student.

The CXL package provides an easy mechanism to provide pull-down menus to the
user. The basic structure to each pull-down menu already exists in the DMT and is
well documented in the CXL Documentation Book (Smedley, 1989). In general,
however, the author calls a CXL function that defines the menu name and the name of
the function that will execute once the menu item is chosen. This executing function
uses the spawnl function provided by the Turbo C Library to suspend operation of the
interface program and run some other executable file. This process is called spawning
a program.

In the case of a new lesson, the executable file, Isn.exe, is called with the name of
the new lesson’s text file included as a command line argument. In the case of a new
exam, the executable file, exam.exe, is called with the name of the new exam’s text
file included as a command line argument. Finally, for new tools, the tool’s
executable file is called with no command line argument. In all cases, control is

returned to the DMT interface once the spawned program terminates.

14

1. USERS GUIDE

A. INTRODUCTION

The Discrete Math Tutor is started from the operating system command line
prompt by typing the command, DMT , inside the directory that holds the DMT files
(See Appendix C for details on installing the program on a hard drive). The first
screen that appears is the introduction and is shown in Figure 6. From the
introduction, the user has four options which may be selected by pressing designated

keys known as /iot keys.

Welcome to the Discrete Math Tutor (DMT) Prototype

DMT : 1989-1990
by
Rick Howard

&
Keith Calcote

LStan_D.e.mn_J

Exit Demo

H- Help ECS - Quit

Figure 6 -Introduction Screen

The first hotr key, case sensitive help, is invoked by typing the letter H. Help is
available throughout the tutor, and the following description is common to all help
menus. If help is selected, an introduction to the available help is displayed. With the
exception of the Esc key, the operation of all hot keys is su.pended while help is
active. The help screen describes the hot keys and explains other information
pertinent to interface operations that are specific to the particular location in the tutor.
If additional help is available, PgUp and/or PgDn is disrlayed at the bottom right hand
corner of the screen. PgUp indicates that the previous page of help may be selected by
typing the page up key. PgDn signifies that the next page of help is available by
typing the page down key. Typing the Esc key will exit the help screen. Typing the
Esc key again will exit the Tutor and return the user to the operating system.

The second hot key, escape (Esc), is available from the introduction screen to quit
the Tutor. Selecting Esc from the introduction will return the user to the operating
system. Also, the escape key is accessible throughout the tutor to back out of the
menus.

The third hot key for the introduction is E. Typing E or selecting Exit Demo with
the cursor and pressing enter will quit the Tutor and return the user to the operating
system.

The last hot key for the introduction, S, is used to start the demonstration. The
demonstration may also be started by selecting Start Demo with the cursor and
pressing enter. When Start Demo is selected a blank opening screen is displayed.

Figure 7 shows the tutorial opening screen.

16

Begin Information Exams Tools Notebook Quit

H - Help ESC - Back up

Figure 7 -Opening Screen

The menu b:. across the top of the opening screen is called the main menu and
contains selectable options incorporated in the interface. The blank portion of the
screen is where the lesson is displayed. The bottom portion of the screen includes

additional information or directions available to the user.

B. BEGIN

The interface provides two ways to begin a lesson. A lesson may be started

with the first page in the lesson, or it may be started with the last active page of

17

previous session. To start the lesson, Begin is selected from the main menu by typing
the hot key, B. Figure 8 displays the opening screen with the Begin menu selected.

From the begin menu the user has two options, Start a Lesson or Return to Last
Lesson. Either of these two options are selected by cursor or by hot keys (S for Start
a Lesson or R for Return to Last Lesson).

If Start a Lesson is chosen, a menu of available lessons is presented. This is
shown in Figure 9. Once the available lessons are listed, the selection is made by

moving the cursor to the desired lesson and pressing enter.

Begin Information Exams Tools Notebook Quit

Start a Lesson

Return to Last Lesson

H - Help ESC - Back up

Figure 8 -Selection of the Begin Menu

18

Figure 10 displays the screen that is presented when Return to Last Lesson is
selected from the Begin menu. The user is prompted to enter his or her social security
number (ssn). The ssn is used to provide unique cataloging of multiple users. When
the user enters his or her ssn, the interface locates and displays the last active page

of the last lesson that corresponds to that ssn.

Begin Information Exams Tools Notebook Quit
Etan a Lesson
eturn to Last Lesson
Logic
H - Help ESC - Back up

Figure 9 -Logic Lesson Selected from Menu

19

Begin Information Exams Tools Notebook Quit

Start a Lesson
Return to Last Lesson

Enter your social secvrity number [1- -1]

H - Help ESC - Back up

Figure 10 - Social Security Number Required to Return to Last Lesson

C. MANEUVERING INSIDE A LESSON

A sample of a display of a lesson is provided in Figure 11. The page number is
listed in the top right hand comer of the lesson. Pages may be selected by typing the
two key combination Alt P, and entering the desired page number. If a page is
selected that is out of bounds of the present lesson (e.g., page 60 is selected but the
lesson is only 40 pages long), the lesson is started over at page one. The page up key
may be used to select the previous page and the page down key may be used to

select the next page. If the page up key is used when the lesson is on the first page,

20

the lesson is wrapped to the last page. Similarly, if the page down key is used when

the lesson is on the last page, the lesson is wrapped to the first page.

Begin Information Exams Tools Notebook Quit

Page 3
Statements

Propositional logic concerns declaratory statements. That is,

statements which are either TRUE or FALSE but NOT BOTH are called
PROPOSITIONS.

[PgUp/PgDn }-
H - Help ALT P-Find Page # ESC - Back up

Figure 11 -Display of a Sample Lesson

D. INFORMATION

The information section was designed so that the student user has review
material available for quick access. The selected material may be added to the user’s
notebook (described later in this section) or may be directed to the printer for hard
copy. This feature allows the student to store and later retrieve material that he or

she identifies as needing additional study.

21

Information is chosen from the main menu by typing the hot key I. Definitions,
examples, theorems, and proofs are selectable from the information menu. Once the
type of information is selected, a list of available items are displayed. The user makes
a selection by moving the cursor to the desired item on the list and typing enter. As
shown in Figure 12, the definition of a graph is chosen from the list of definitions

while a lesson remains active in the background.

Begin Information Exams Tools Notebook Quit

Definitions Page 3
Statements Examples
Propositional E‘::;Sems statements. That is,
statements wh ALSE but NOT BOTH are called
PROPOSITIONS.

You selected : Graph

Print Definition

[PgUp/PgDn }—
H - Help ALT P-Find Page # ESC - Back up

Figure 12 -The Definition of a Graph is Selected to Add to the Notebook

After the selection is made, the user is presented with two options. The item may

be added to the notebook with the hot key, N, or directed to the printer with the hot

22

key, P. Also, either of the options may be selected by the cursor. The user is
cautioned to ensure that the printer is tumed on prior to typing the hor key, P. If the
notebook option is selected, the user is asked to provide the name of the notebook
and asked whether the item should be appended to or overwrite the notebook. Again,
the user is cautioned that if the overwrite option is chosen, all contents of the
notebook are erased prior to writing the item to the notebook. Figure 13 displays the
screen that results when add to the notebook is selected. After the task is completed,

the user is returned to the page in the lesson from which he came.

Begin Information Exams Tools Notebook Quit

Definitions Page 3
Statements Examples
Propositional | Theorems statements. That is,
statements Wieem oot erer+reemorehLSE but NOT BOTH are called

PROPOSIT Name Your Personalized Notebook]

What is your Notebook Name?
(A)ppend or (O)verwrite?

Add Definition to Notebook
Print Definition

PgUp/PgDn }
H-Heﬁpg PREER ALT P-Find Page # ESC - Back up

Figure 13 -Notebook Name is Requested

23

E. EXAMS

The exams section is provided to allow the user to test his or her knowledge of a
particular area. Exams is selected from the main menu by typing the hot key, E.
Subsequently, a list of exams are presented. A particular exam may be chosen by
moving the cursor to the name of the exam in the list and pressing the enter key.

Selection of an exam is shown in Figure 14.

Begin Information Exams Tools Notebook Quit

Eo;ic Examj

[Enter the Number of Exam Questions Desired]

How many exam questions do you wish? 05

H - Help ESC - Back up

Figure 14 -Selection of Logic Exam

24

When a particular exam is chosen, the user is asked to enter the number of
questions that are desired. The user must respond with a two digit number from 01 to
69. If the user asks for more questions than are available, a message is displayed
that shows the total number of questions which are available for that exam. The user
is then returned to the lesson.

Once the exam is selected and the number of questions are entered, a random
selection process is used to present exam questions to the screen. Questions are
answered by typing the letter of the corresponding selection for multiple choice
questions and by typing either t or f for true/false questions. After the selection is
entered, a message is displayed indicating whether the selection was correct or
incorrect. Also, the correct answer is highlighted. If explanations have been
provided, typing the /ot key, E, will display an explanation for the corresponding
question. Figure 15 shows a question with the solution highlighted. New questions
are introduced until the desired number of questions have been presented. After the

last question, a results screen is displayed.

25

Begin Information Exams Tools Notebook Quit

Your answer b was INCORRECT.

Which of the following is a statement?

a. Write a program that calculates factorials.
b. Why are there so many real numbers?

¢. Who is the instructor for your discrete math class?
d. The road is bumpy.

E for explanation, enter to continue.

H - Help ESC - Back up

Figure 15 -Exam Question with Answer Highlighted

F. TOOLS

Tools, selected from the main menu by typing the hot key T, provides the user
with instruments that augment the lessons and which aid in the student’s
understanding of key concepts. Figure 16 shows the interface with a lesson in the
background and the tools menu selected. From the tools menu, diagrams, reference,

calculator, or problem solver may be selected.

26

Begin Information Exams Tools Notebook Quit
Diagrams || Page 3
Refererice

Statements Calculator

Propositional logic concems declarato Problem Solver |5

statements which are either TRUE or FALSE but NOT BOTH are called

PROPOSITIONS.

[PgUp/PgDn }
| H - Help ALT P-Find Page # ESC - Back up

Figure 16 -Selection of the Tools Menu

1. Diagrams

A demanding concept or idea may be presented or practiced pictorially. Dia-
grams, selected froin the fools menu, are used to graphically rehearse the user. At

this tune, the Venn diagram drill is available through this selection. Figure 17 shows

an example of a Venn diagram drill session.

27

A UNION B UNION C ?
8
CORRECT
Select 1-8 to fill, E to erase, Q to quit Enter to continue

Figure 17 -Venn Diagram Drill Session

The drill session consists of a randomly generated Venn diagram problem.
The problem is displayed at the top of the screen. Three circles are drawn in the cen-

ter of the screen and represent three sets A, B, and C. The regions of intersection are

28

numbered from one to eight. The bottom of the screen contains instructions and re-
sults.

The user is asked to select the number or numbers .2t correspond to the re-
gions which would be contained in the set of the posed question. As the numbers are
selected, the corresponding region is shaded. The user may erase his or her choices
and be presented with the original problem by typing the hot key E. Once the region
or regions are selected, the user presses the enter key. Then, the user’s answer is
processed and either CORRECT or INCORRECT is displayed in the bottom right
hand comer of the screen. If the answer is correct, the next question is presented af-
ter the enter key is pressed. If incorrect, the correct solution is shown before the next
question is presented. The user may quit the Venn diagram drill and return to the

same point in the lesson from which he came by typing the hot key Q.

2. Reference
A quick reference to review key concepts or ideas is made available in this
tool. Reference, selected from the tools menu, is used to rapidly refresh the user’s
memory in the chosen area. Figure 18 shows that quick reference is available for Venn

diagrams and truth tables and is selected from the tools menu.

a. V. wn Diagrams

The Venn diagram quick reference begins with a menu of available
Venn diagram drawings. The user selects the letter corresponding to the desired
picture and types enter. Figure 19 displays an example of the resulting drawing. The
desired telationship is displayed at the top of the screen. Three circles are drawn in

the center of the screen that represent three sets A, B, and C. The area that

29

corresponds to the chosen relationship is shaded. The user may quit the Venn

diagram reference and retum to the lesson by typing the hot key Q.

Begin Information Exams Tools Notebook Quit

rDi.aua.ms___] Page 3
Reference

Statements Calculator
Propositional logic concemns declarato Problem Solver s

statements which are either TRUE or FAl Truth tables H are called
PROPOSITIONS. Venn Diagrams

[PgUp/PgDn]
H - Help ALT P-Find Page # ESC - Back up

Figure 18 -Reference Available for Truth Tables and Venn Diagrams

b. Truth Tables

There are two choices for truth rable quick reference and they are drill
or rules. The rules section contains a selection of four basic truth tables. The truth
tables are chosen by typing one of four function keys; Fl, F2, F3, or F4. As shown in

Figure 20, the basic truth tables are displayed in a window located at the top right

30

hand comer of the screen. Typing any key other than the four function keys will return

the user to the lesson.

(A UNION B) INTERSECT C~

Q = Quit Enter to continue

Figure 19 -Sample of a Venn Diagram Quick Reference Drawing

31

The drill division of the truth table quick reference includes flash card
like practice for the student. An example of the truth table flash cards is illustrated in
Figure 21. The user is presented with a randomly selected basic relationship and
asked to determine its truth value. Once the user decides on the truth value, he or she
types "T" for true or "F" for false. Then, a comparison is made between the given
answer and the computed answer. If the user’s answer is comect, then "correct” is
displayed below the flash card. If incorrect, then "wrong" is displayed. After a short
delay, a new flash card is presented and the process is repeated. The student may
quit the flash cards by typing Q. After Q is typed, the results of the flash card session
are displayed as shown in Figure 22. From the results screen, typing any key will

retumn the user to the lesson.

32

Begin Information Exams Tools Notebook Quit
Page 3
—{ F1-And F2-Or F3-Imply F4-Iff 1
Statements .
- . P | Q]| PImpliesQ
Propositional logic concems ¢ T T T
statements which are either T TF % l’:I‘
PROPOSITIONS. E F T
[PgUy/PgDn }-
H - Help ALT P -Find Page # ESC - Back up

Figure 20 -Display of the Quick Reference Basic Truth Table

3. Calculator
This instrument is available in the tools menu (see Figure 16) and is provid-
ed so that the user may perform simple mathematical operations without the need of
an extemal calculator. Calculator will perform basic addition, subtraction, multiplica-

tion, and division. The user may quit the calculator by typing the escape key.

33

T = F

T = TRUE, F=FALSE, Q = QUIT

Figure 21 -Display of Truth Table Flash Card

4. Problem Solver
The problem solver is designed to build arbitrary truth tables of moderate
size. This tool provides the student with the means to check truth table problems and
provides the ability to explore truth tables of his or her own design. The truth table

problem solver is available in the rools menu (see Figure 16).

34

CORRECT INCORRECT

AND 3 1
OR 6 3
IMPLY 4 4
IFF 3 0

Figure 22 -Results Screen for the Flash Card Session

Problems may be explored using four variables (p,q,r,s). The variables may
be entered as either upper or lower case, but they are all converted to upper case by
the solver. That is, Q and q are treated as the same variable, Q, by the solver. The
solver allows use of five operators which are listed below:

1. ~ (negation),

2. & (and),

3. | (on),

4. > (implication),
5.

= (equivalence).

35

The hierarchy that the problem solver obeys is given as follows:

. negation of variables,
. operations inside parentheses,
. negation of operations inside parentheses,

. or’s,

1
2
3
4. and’s,
5
6. implications,
7

. equivalences.

Also, operations are executed from left to right.

After the expression is typed onto the screen and the user types enter
(<CR>), the solver calculates and displays the appropriate truth table. A complete
breakdown of the truth table is displayed so that the user may follow the solution
step-by-step. The breakdown of propositions is listed above the display of the truth
table.

For example, in Figure 23 the expression ~(plq) = ~P&~Q is investigated.
The fourth term evaluated by the solver is P4 and is given as ~(PIQ). The last term,
P6, is the originally posed relation. Below the propositions is the truth table. To quit

problem solver and return to the lesson, the user types the escape key.

36

Begin Information Exams Tools Notebook Quit

Enter the expression for the truth table.
~(plg) = ~P&~Q

Bich
P3 : (P1Q)
P4 : ~(PIQ

P5:~
P6 . ~(PIQ) = ~P&~Q

P Q PIL P2 P3 P4 P5 P6

TEEF T EET
FEEL F A £ 7

Push any key to continue

H - Help ESC - Back up

Figure 23 -Example of the Truth Table Problem Solver

G. NOTEBOOK

The notebook is a file that contains information that the user deems necessary to
isolate for further study. Items listed in the information section may be entered into
the notebook. The notebook may be displayed to the screen or sent to the printer for a
hard copy. If the notebook is displayed to the screen, the information in the notebook
is treated as though it were lesson text. This means that maneuvering inside the
notebook is the same as maneuvering inside a lesson (described previously). To quit

viewing the notebook the student must select the quit menu with the hot key Q.

37

Then, from the quit menu, exit is selected. The user is then retumned to the same point

in the lesson from which he came.

H. QUIT

Prior to quitting the lesson, the user has the option of saving his or her position in
the lesson. This option, available in the quit menu, is provided so that the user may
start the next session on the current page of the present lesson. The quit menu,
displayed in Figure 24, contains two options. The two options are: save the current
position and exit.

If save the current position is selected, the user is prompted to enter his or her
social security number. After the ssn is entered, the user is retumed to the operating
system. For those who do not care to save their last position, the exit option may be
selected by typing the hot key E. By choosing exit from the quit menu, the user is

immediately returned to the operating system without regard to the present position.

38

Begin Information Exams Tools Notebook Quit

L Save the current position |

Exit

H - Help ESC - Back up

Figure 24 -Quit Menu is Selected

39

IV. FURTHER WORK

A. INTRODUCTION
The DMT User Interface Design Document (See Appendix B) describes the

relationships between the four main modules to the system: the Expert System, the
Tutor Model, the Student Model and the User Interface. Figure 46 of Appendix B
shows that the User Interface is the main hub for data communications between the
four modules. Therefore, implementation of the DMT User Interface module before
the other three modules is required. This thesis accomplishes that task.

Although the User Interface is operational, more work is needed to make the
DMT a complete ICAI system. First, testing the User Interface on real users will
discover the strengths and weaknesses of the design. Second, based on the test
results and based on already known extensions, the modification of the User Interface
will make it more user friendly and more effective. Finally, implementing the other

three modules will make the DMT a complete ICAI system.

B. TESTING

The DMT, as it now exists, is simply a prototype. Everything the program does
mersely shows what is possible. No real lesson in discrete math exists. Therefore,
development of complete discrete math lessons is the next important task. Once the
Jessons are complete, testing can begin on real students.

The testing procedure should answer two distinct questions: (1) how effective is
the DMT at teaching the subject domain, and (2) what are the unknown bugs in the

program.

40

Testing the effectiveness of the DMT is not a trivial matter. Testing must
evaluate the effectiveness of the interface and the effectiveness of the instruction
separately. For instance, it is possible to combine an ineffectual lesson with an
effective interface and vice versa. The other possibilities are that the lesson and the
interface are both effective or that they are both ineffective. The tester must
distinguish between these possibilities and provide ideas on how to improve the
interface design or the development of each individual lesson.

Testing for unknown bugs is not aa easy matter either. A logical, systematic
approach is required to ensure that most of the major program deficiencies are found.
When a bug is identified, correcting the bug becomes a priority. If a bug is not
correctable, then that bug impacts upon the effectiveness of the interface.

After completion of all tests, the tester must conclude one of two possibilities: the

DMT is an effective user interface or it is not.

C. INTERFACE EXTENSIONS

Although the DMT is a working prototype, extensions to the existing software
will make the system more user friendly and more effective.

Presently, it is not possible for a non-programmer to modify the interface. All
menus are hard coded using Mike Smedley’s C Extended Library (CXL)
(Smedley,1989). Thus, to add any new lesson to the DMT, a C language programmer
must physically change the existing DMT code. The major disadvantage in this
situation is the time it takes to become familiar with both the CXL functions and the
existing DMT code. It is anticipated that most lesson writers for the DMT will not
have a programming background. In order to make it easy to add lessons to the

DMT, development of an automated menu generation tool is required.

41

Currently, the DMT does not allow the user any text editing capabilities. Most
input from the user is taken from hot keys off the keyboard which allows the user to
manipulate the menuing system. This type of system lends itself nicely to using a
mouse as an input device. Providing mouse support to the user will allow him to
point & shoot where he needs to go instead of remembering a plethora of unfamiliar
keyboard commands. Smedley’s CXL package contains functions that support mouse
implementation.

One of the original assumptions of this project is that most students interested in
this type of instructional software will have access to an AT class computer with an
80286 CPU. Although this assumption is correct today, in five years it may not be
true. In recent PC periodicals like BYTE and Dr. Dobbs, the 80286 CPU machine is
rarely mentioned. The next generation CPU’s like the 80386 and 80486 are the
computers that will be available to students in the next decade (Irresistible VGA,
1990), (MAC IIfx, 1990), (Mainstream Amiga, 1990) & (Memory Management,
1990). Therefore, upgrading the DMT to run on one of these machines to take
advantage of their unique abilities may increase the effectiveness of the Tutor.

The user’s personalized notebook is a key feature to the DMT. It allows the user
to store important information for further study. Extensions to the user’s interaction
with the notebook would greatly enhance the program. One extension might be to
add an index page to the notebook that will list each item included and the page
number. Another extension will allow the user to edit his notebook while running the
DMT program. Other extensions are also possible; but, these two can directly -

enhance the usability of the notebook as a learning tool.

42

D. THE NEXT THREE MODULES

As mentioned in the introduction to this chapter, the completion of the DMT User
Interface represents only 25% of a complete ICAI system. The remaining 75% of the
work resides in the unimplemented modules: the Expert System, the Tutor Model and
the Student Model. In this thesis, these three modules are referred to as the
Artificial Intelligence (Al) modules.

The User Interface is developed with the Turbo C programming language. Turbo
C has been chosen because it is good at manipulating hardware. This is necessary
since the User Interface is concemed mainly with input/output from the user. Thus, a
language that makes it easy to manipulate the input/output devices of the PC is
essential.

The remaining Al modules require a different programming environment than the
User Interface. The Al modules do not interact directly with the user. Thus, a goud
hardware manipulation language like Turbo C is not required. Instead, a programming
environment that is suitable for implementing Al techniques is needed. The only
limitation to this environment is that it must have the capability to link with Turbo C
executable programs, i.e., the User Interface. One language that fits the requirement

is Turbo Prolog.

E. WORK LOAD

The proposed extensions and the remaining Al modules fit into two basic
categories: thesis work and class projects. Also, completion of these extensions
require experts in many different fields including computer science, discrete math, C
programming and psychology. Figure 25 categorizes each project into the amount o7
work involved and who should attempt it. Figure 26 is a digraph that details the order

in which each project should be attempted.

43

Topic Project Type Student Type

1 Testing/Modification Thesis Topic Computer Science
2 Automatic Menu Generation Class Project C Programmer
3 Notebook Editing Class Project C Programmer
4 Mouse Support Class Project C Programmer
5 AT 80386 Upgrade Thesis Topic Computer Science
6 Discrete Math Lessons Class Project Discrete Math
7 Expert System Thesis Topic Computer Science/Discrete Math
8 Student Model Thesis Topic Computer Science/Psychology
9 Teaching Model Thesis Topic Computer Science/Psychology

Figure 25 -Further Work Summary

=)
\)
p—

-7

A
7

Figure 26 -Order of Future Work

44

The most difficult problems to solve are the last three listed in Figure 25: the A/
modules. The Al modules are the most difficult because they require experts in two
completely different fields to solve each problem. For example, the Expert System
module requires a computer scientist with a background in artificial intelligence
techniques and a mathematician with an emphasis in discrete math. Likewise, the
Student Model and the Teaching Model both require the same type of computer
scientist as the Expert System module as well as a psychologist with a background in
learning theory.

The combination of computer science and psychology make the Student Model and
the Teaching Model the most difficult of all. Both topics require the cooperation of
two entirely different disciplines. However, both are essential to the successful
completion of the DMT. The computer scientist understands how the computer works

and the psychologist understands how a student learns.

F. CONCLUSIONS

The Discrete Math Tutor (DMT) is 25% complete. The only module implemented
out of the four that make up an Intelligent Computer Aided Instruction (ICAI) system
is the User Interface module. However, this phase was not insignificant. The
finished User Interface contains 8694 lines of C code and comments (See Appendices
E-T).

The work was divided equally between the two authors: Keith Calcote and Rick
Howard. Calcote delivered the lesson program and all the tools while Howard
designed and implemented the interface. However, both provided insight to each
other when problems occurred.

Two key problems were solved in order to make the User Interface work. First, a

way to convert ASCII files into a lesson or exam was essential to make the DMT

45

useful. With this functionality, anyone who has access to an ASCII editor may write
a lesson or exam that the DMT can easily present. Second, solving the layered
memory problem was critical to the future success of the DMT operating as a
complete ICAI system. Without the layered memory solution, the User Interface
would have exceeded the 640K upper bound of RAM. Consequently, there would not
have been any available memory left to add the three unimplimented Al modules.

Notwithstanding, the User Interface is a useful product in its own right. The
mixed initiative environment makes the DMT stand out compared to conventional
CAI programs found in the public sector. Allowing the student the ability to pursue
topics of interest from any point in a lesson provides a necessary measure of
student control. The student does not have to sit in front of a computer and read
endless screens of text. Instead, he can select what he needs to see and pursue the
answers to questions that occur while the lesson is presented.

The DMT is a working prototype. On its own, the DMT demonstrates the
potential it has as an effective ICAI system. To make the prototype complete, three
tasks must be accomplished:

1. Test the existing DMT for strengths and weaknesses
2. Modify the DMT based on the test results and known extensions
3. Implement the remaining A/ modules

However, the DMT as it exists now is superior to the standard CAI program and is

available right now to teach students certain aspects of discrete math.

46

APPENDIX A

REQUIREMENTS DOCUMENT

A. INTRODUCTION

The user interface to an intelligent tutor is critical for any ICAI system and is the
main focus for this thesis. This appendix describes the mechanics of how the
designers envision the user interface for the Discrete Math Tutor (DMT). This
document was used as a basis to develop the Design Document (See Appendix B)

and all code (See Appendices E-T).

B. ENVIRONMENTAL CHARACTERISTICS

1. Minimum Hardware Required

* AT Class Personal Computer with a 8086 CPU or higher.
» EGA graphics card or higher.

* Monochrome monitor or higher.

* A dot matrix printer with draft quality or better.

* 20 Megabyte hard disk or greater.

2. Target Audience
DMT students are assumed to be computer novices with no prior experience
in Discrete Math but possessing a strong high school algebra foundation.
C. OVERVIEW

The DMT interface provides the student with the capability to ask any reasonable
question that he may have regarding a tutorial lesson. But, the interface is not

required to understand the natural human language. The interface also provides a

47

complete leaming environment. In other words, when a student sits down to use the
DMT, he requires no other materials but the minimum hardware requirements
mentioned in Section B1.

The DMT is divided into six sections of functionality:

1. "Begin" and "Quit" are self explanatory

2. "Information" allows the user to review important definitions, theorems and
examples pertaining to a lesson of interest.

3. "Pictures” gives the user the capability to construct any type of diagram during
any part of the lesson. For example, perhaps a student is trying to solve a
Depth First Search problem. The DMT provides the student a means to
construct the graph of the problem he wishes to solve.

4. "Algorithms" allows the student to see the results of different algorithms on
data that he provides.

5. "Calculator” provides the student a means of determining the answer to quick
numerical calculations: addition, subtraction, multiplication and division.

6. "Notebook" allows the student to store key facts such as definitions, theorems,
algorithms and examples for future study.

D. STORY-BOARD

1. Opening Screen
Figure 27 is the opening screen to the DMT.
The menu bar at the top represents all the options available for this program.
The DMT highlights the "Begin” portion of the menu bar in a different color
initially and moves the highlighted area to any user selected option.
When one of the above menu options is selected, the DMT displays a pop-up

menu that lists further choices.

48

Information Pictures Algorithms Calculator Notebook Quit

DISCRETE MATH TUTOR

F1forHelp ESC to Backup

Figure 27 -Opening Screen

2. "Begin" Pop-up Menu
The menu shown in Figure 28 is presented if Begin is chosen from the top

menu bar. The DMT displays other pop-up menus depending on the choice made

here.

49

Begin

Start a Lesson

Return to Last Session

Figure 28 -"Begin" Pop-up Menu

3. "Start a Lesson" Pop-up Menu
The menu shown in Figure 29 is presented if Start a Lesson is chosen from the
"Begin" Pop-up menu. The user chooses the lesson he wishes to study. The
lessons listed here are just examples and do not reflect what will actually be included

in the DMT. Each lesson is listed in the recommended sequence of study.

50

Start a Lesson

Introduction

Logic

Graphs

Figure 29 -"Start a Lesson'" Pop-up Menu

4. "Return to Last Session" Pop-up Menu
The menu shown in Figure 30 is presented if Rerurn to Last Session is chosen
from the "Begin" Pop-up menu. The user enters his social security number. The DMT

then displays the user’s last screen in his previous session.

Return to Last Session

Enter Your Social Security Number:

Figure 30 -"Return to Last Session" Pop-up Menu

31

5. "Information" Pop-up Menu
The menu shown in Figure 31 is presented if Information is chosen from the

top menu bar.
When one of the options is selected, the DMT displays a pop-up menu that

lists further choices.

Information

Definitions

Examples

Theorems

Figure 31 -"Information" Pop-up Menu

6. "Definitions" Pop-up Menu
The menu shown in Figuic 32 is presented if Definitions is chosen from the
"Information” Pop-up menu. It lists the names of all definitions in the DMT by name
in alphabetical order. After the user chooses the definition he wishes to review, the
DMT displays the entire definition in a pop-up window. The DMT then presents the

options shown in Figure 33.

52

Definitions

Definition 1

Definition 2

Definition 3

Definition 4

Figure 32 -"Definitions" Pop-up Menu

Notebook Interaction

Add Definition to Notebook

Print Definition

Figure 33 -"Notebook Interaction" Pop-up Menu

53

If the user chooses "Add Definition to Notebook"”, the DMT concatenates the
entire definition to the end of the student’s notebook .
If the user chooses "Print Definition", the DMT outputs the definition to the

printer.

7. "Examples" Pop-up Menu
The menu shown in Figure 34 is presented if Examples is chosen from the
"Information” Pop-up menu. It lists the names of all examples in the DMT by name
in alphabetical order. After the user chooses the example he wishes to review, the

DMT displays the entire example in a pop-up window.

Choose an Example

Example 1

Example 2

Example 3

Example 4

Figure 34 -"Choose an Examples" Pop-up Menu
The DMT then presents the menu shown in Figure 35.

If the user chooses "Add Example to Notebook", the DMT concatenates the

entire example to the end of the user’s notebook.

54

If the user chooses "Print the Example", the DMT outputs the example to the

printer.

Examples

Add Example to Notebook

Print the Example

Figure 35 -Examples

8. "Theorems" Pop-up Menu

The menu shown in Figure 36 is presented if Theorems is chosen from the
"Information” Pop-up menu. It lists the names of all theorems in the DMT by name in
alphabetical order. After the user chooses the theorem he wishes to review, the
DMT displays the entire theorem in a pop-up window. The DMT then presents

options shown in Figure 37.

35

Theorems

Theorem 1

Theorem 2

Theorem 3

Theorem 4

Figure 36 -"Theorems" Pop-up Menu

Notebook Interaction

Add Theorem to Notebook

Print Theorem

Figure 37 -"Notebook Interaction" Pop-up Menu

If the user chooses "Add Theorem to Notebook"”, the entite theorem is
concatenated to the end of the user's notebook.
If the user chooses "Print Theorem", the DMT outputs the theorem to the

printer.

56

9. "Pictures" Pop-up Menu

The menu shown in Figure 38 is presented if Pictures is chosen rrom the top
menu bar. Choosing an option from this menu allows the user to draw a picture in a
pop-up window. The Truth Table and the Graph are just examples. It is not known
what kind of pictures are required. This determination will depend upon how the
authors of any particular lesson construct their lesson pla;n. However, if a picture of
some sort is required in any lesson, the DMT will provide the user the drawing

capability from this menu selection.

Pictures

Truth Table
Graph

Add to Notebook

Print Picture

Figure 38 - "Pictures" Pop-up Menu

57

10. " Algorithm" Pop-up Menu
The menu shown in Figure 39 is presented if A/gorithm is chosen from the top
menu bar. It lists the names of all algorithms in the DMT by name in alphabetical
order. After the user chooses the algorithm he wishes to review, the DMT presents

the options shown in Figure 40.

Choose an Algorithm

Algorithm 1
Algorithm 2

Algorithm 3

Algorithm 4

Figure 39 -" Choose an Algorithm" Pop-up Menu

58

Algorithm

List the Algorithm
Step thru the Algorithm

Run the Algorithm

Add Algorithm to Notebook

Print the Algorithm

Figure 40 -" Algorithm" Pop-up Menu

If the user chooses "List the Algorithm", the DMT displays a description of
the algorithm in a pop-up window.

If the user chooses "Step thru the Algorithm”, the DMT walks the user thru
the chosen algorithm one step at a time in a pop-up window on data that the user
provides.

If the user chooses "Run the Algorithm", the DMT displays the answer to a
set of user provided data in a pop-up window using the chosen algorithin.

If the user chooses "Add Algorithm to Notebook", the DMT concatenates the
entire algorithm to the end of the user’s notebook.

If the user chooses "Print the Algorithm", the DMT outputs the algorithm to

the printer.

59

11. "Calculator" Pop-up Window
The pop-up window shown in Figure 41 is presented if Calculator is chosen
from the top menu bar. The user enters calculations into the calculator in "INFIX"
notation straight from the keyboard. For example, if the user wishes the results of
the addition 242, he enters the following data:
242=
The DMT shows the "2+2" in the display portion of the calculator. When the

user pushes "=", the DMT clears the display and presents the answer.

DISPLAY

Figure 41 -" Calculator” Pop-up Window

60

12."Notebook" Pop-up Menu

The menu shown in Figure 42 is presented if Notebook is chosen from the top
menu bar.

If the user chooses "View Notebook"”, the DMT displays a pop-up window
with the contents of the user’s personal notebook. The DMT allows the user to page
up and down his notebook. The user presses the escape key to retumn to his previous
window.

If the user chooses "Print Notebook”, the DMT sends the contents of the

user’s personal notebook to the printer.

Notebook

View Notebook

Print Notebook

Figure 42 -"Notebook" Pop-up Menu

61

13. "Quit" Pop-up Menu

The menu shown in Figure 43 is presented if Quir is chosen from the top menu
bar.

If the user chooses "Save Current Position", the DMT presents the same
display as presented in Section 3D: Return to Last Lesson. After the user enters the
correct SSN, the DMT returns the user to the "Quit" pop-up menu. If the user used
"Return to Last Session” upon the start of this session, the DMT will not make the
user enter the SSN again. It will remember the current SSN and store the current
lesson session position under that SSN. This functionality allows the user to return
to his last location in the DMT when he retums.

If the user chooses "Display Results”, the DMT will display the student’s
performance in a pop-up window. The "Display Result” screen is not yet determined
since the student model has not been designed.

If the user chooses "Exit", the program terminates.

Quit

Save Current Position

Display Results

Exit

Figure 43 -" Quit" Pop-up Menu

62

14. "Help" Pop-up Menu
Help is not a selection from the top menu bar. However, it is constantly
available to the user if he presses the F1 key. Help presented to the user is context
sensitive. This means that the DMT will present an appropriate help screen no
matter where the user is in the system.
15. General Notes
On any pop-up menu, the DMT will not accept keystrokes that are not valid
choices.
All pop-up menus stay on the screen until a choice is made. An example is

shown in Figure 44.

63

Retum to Last Lesson

Start a Certain Lesson

Introduction

Logic

Graphs

Bibliography

Figure 44 -Cascading Menu Example

The user chose the "Begin" pop-up menu. The DMT offeres two choices:
Start a Lesson and Retum to Last Session. Suppose the user chose Start a Lesson.
The DMT then displays the "Start a Lesson" pop-up menu.

After the user chooses which lesson he wants, the DMT erases the pop-up
menus and starts the chosen lesson.

The user chooses menu items in one of three ways: arrow keys and a carriage
return, key letters in the menu choice (indicated by italicized first letters in all

menus), or the point and shoot mouse.

The escape key allows the user to return to the previous window or pop-up

menu at any time.

E. CONSTRAINTS & GOALS
1. Constraints

Lesson authors must write lessons with the DMT interface in mind. After a
lesson is developed, the author must prepare the following additional screens:
definition, algorithm, theorem, and example.

Any diagrams needed in the lesson must be provided in the "Pictures" portion
of the DMT.

Any new calculator functions needed by the students must be added to the
"Calculator” portion of the DMT.

2. Goals

The interface allows the user to ask any pertinent question about the lesson
without having the computer act as a language interpreter.

The DMT is an evolving system. As new lessons are added, new
functionality to the DMT interface must be added.

The DMT Interface is an overlay to any math tutor system. In other words,
the DMT interface could be laid on top of any existing math tutor as long as the
constraints mentioned above were met. This means that the DMT interface could

become a standard for any math tutor.

F. LIFE CYCLE CONSIDERATIONS

The desired DMT should function as described.
If problems occur in the design and implementation phase of this project, the

following reduced DMT functionality will be implemented:

» The "Algorithm" portion of the DMT will only run algorithms and not allow
the user to step thru an algorithm.

» The "Notebook" portion of the DMT will not allow the user to page up and
down the contents of the notebook. Instead it will allow the user to scroll
one way through the notebook.

If no problems occur during the design and implementation phase of this project,
the following functionality will be added to the DMT:

 Add pages to the student notebook so that all entries can be indexed.
» Allow the user to selectively erase portions of the notebook.

66

A. INTRODUCTION

APPENDIX B

DESIGN DOCUMENT

The user interface to an intelligent tutor is critical for any ICAI system and is the

main focus for this thesis. This appendix describes the design of the user interface

for the Discrete Math Tutor (DMT) using the Software Design methodology. This

document was completed after the Requirements Document (See Appendix A) and

prior to any written code (See Appendices E-T).

B. SOFTWARE DESIGN METHODOLOGY (SWD)

The major component to SWD is the Data Flow Diagram or DFD. The DFD is

used to model any type of system. SWD uses only four symbols to describe a DFD:

1.

2
3.
4

Extemal Entity D

Data Flow
Process

Data Store

I
— 1

-> The source/destination of data outside the system.
-> A path that data follows.
-> A function that transforms data.

-> A place to store data.

From the DFD, the Data Dictionary is derived. The Data Dictionary represents

an abstract view of the type of information inside the system. (Gane, 1978)

67

C. SWD APPLIED TO THE USER INTERFACE
1. The DFD

SWD is a hierarchical procedure. The designer begins with the "Big Picture”
abstract view of his application and uses a DFD to describe it.

Figure 45 is a simple, abstract view of the Discrete Math Tutor (DMT). Note
that the user is an outside entity to the DMT. He provides "Input" data and
"Problems" data to it. He receives "Solutions" data and "Lessons” data from it.
These data items become the first entries listed in the DMT Data Dictionary.

More detail to this level of abstraction is added by developing a DFD for each

"Process” described. For example, a DFD for the DMT process is shown in Figure 2.

Input/Problems/Solutions/Lessons
DMT USER

Figure 45 -SWD Tobp Level abstraction of the Discrete Math Tutor (DMT)

68

Expert System

Problems/Solutions

Input/Problems/Solutions/Lessons

Lexsons

Performance

Student Model

Figure 46 -DFD for the DMT Process

In Figure 46, the four basic modules described in the thesis introduction
appear for the first time. A new entry into the Data Dictionary includes the
"Performance” data item.

Further detail is now added to this level of abstraction by following the same
procedure. Since this thesis deals with the user interface, the next abstraction level
concemns the DFD for the User Interface process and is shown in Figure 3.

Notice that in Figure 47, the Tutor Module, Expert Module, Student Module
and User are all external entities to the Interface Processing Svstem; however, the
Information Processing System receives the same data items described in Figure 46.

Further, Figure 47 shows the Data Store symbol for the first time. These Data

69

Stores hold information in the form of Text for use by the Interface Processing

System. Thus, the Data Dictionary must now include Text as a Data Item.

Expert System Uner

Input/Problems

Problems/ Solutions

TutorModel Student Model

Lessons

Performance

Interface Processing System

Definitions

Theorems

Examples Notebook

Algorithms

Figure 47 -DFD for the User Interface Process

Still, this representation is too general. Figure 48 shows the DFD for the

Interface Processing System Process.

70

Theorems TutorModel Unser
Expert Systems
blems:
Student Model gmu(i omn:
Text lﬂp\ll
Lessons Input
Performance
Problems
Calculator
Notebook
Text St
. Start
Start Command Center
Text
Example Choice
Show Example Algorithm Choice

Text

Examples

Definitions
Show Algorithm ’

Text

Algorithms

Figure 48 -DFD for the Interface Processing System Process

71

Observe that all the data stores and processes mentioned in the previous
examples are shown as outside entities in this DFD shown in Figure 48. Further
notice that all the processes listed in the DFD shown in Figure 48 represent the main
functionality of the user interface.

The comunand center controls all the operations in the Interface Processing
System. Based on input from the User, the Command Center contacts the other
‘entities in the DMT. For example, the user may wish to see a Theorem, Definition or
a Notebook entry. The Command Center retrieves that information from the
appropriate data store and presents it to the user.

The Calculator process and the Pictures process are programs within the
program. This means that once the Command Center starts these processes, they
perform their functions based solely on the User input and not from any comwnands
from the Command Center. Once the user terminates these two processes, the
program passes control back to the Command Center.

The Calculator process performs simple calculations pertaining to any Discrete
Math lesson and the Pictures process allows the user to represent Discrete Math
problems in a grapinca] form.

The Show Example and Show Algorithin processes step the user through
desired problem examples and Discrete Math algorithms based on the user’s choice.
These processes are different from simply showing the user a definition or a theorem
in that the program presents each example and algorithm like a lesson.

Finally, the Make Menus process constructs the menuing system that allows
the User to make his choices from the Command Center.

Now the Data Dictionary contains three additional items: Example Choice,
Algorithm Choice and Start. The Example and Algorithm Choice options are self-

explanatory; but, Start needs some explanation.

72

When a process receives the Start Data Item, it begins its process. The
process executes based solely on internal data structures. It does not rely on any
outside Data Stores mentioned in the higher levels of abstraction. As mentioned for
the Calculator and Pictures processes, when the running process is complete, it
retumns control back to the Command Center.

2. The Data Dictionary
From the above Data Flow Diagrams, the Data Dictionary contains the Data

Items listed in Figure 49:

Problems
Solutions

Lessons
Performance

Text

Input

Example Choice
Start

Algorithm Choice

Figure 49 - Data Dictionary Entries
The designation assigneu to each data item is a high level abstraction of what
is actually represented in the program. More detail is provided by subdividing each
data item into its atomic levels. For example, the "Lessons” Data Dictionary entry
may divide into two parts: "Text" and "Pictures”.
The following description of the Data Dictionary for the DMT is based on one
lesson: Logic. Obviously, the DMT will contain more sub-divisions of Data Items as

more lessons are added.

73

The following figures show each entry in the Data Dictionary subdivided into
its atomic level. For example, Figure 50 shows that the "Problems" data item is
subdivided into a "Logic Equation”. Figure 50 also shows what a "Logic Equation”
looks like. Figure 51 shows how the "Solutions" data item is subdivided. Figures 52,
53 and 54 show how the "Lessons" data item is subdivided. Figures 55 and 56 show
how the "Performance” data item is subdivided. Figures 57, 58, 59, 60 and 61 show
how the "Text" data item is subdivided. Figure 62 shows how the "Input”, "Example
Choice" and "Algorithm Choice" data items are subdivided. Figure 63 shows how the

"Start” data item is subdivided.

Problems -> Logic Equation

(p=>q) V (q=>p)

Figure 50 -Problems Data item

74

Solutions -> Truth Table

P 9 p=>q q=>p (p=>q) V (qg=>p)

T T T T T
T F F T T
F T T F T
F F T T T

Figure 51 -Solutions Data Item

Lessons -> Text

This is the Truth Table for the equation:

(p=>q) V (q=>p)

Figure 52 - Lessons Data Item (Text)

75

Lessons -> Pictures

p q p=>q q=>p (p=>q)V(q=>p)

o om o =
IR
- e
T e e
m e]]

Figure 53 - Lessons Data Item (Pictures)

Lessons -> Pictures -> Text

This is a tautology

Figure 54 - Lessons Data Item (Pictures -> Text)

76

Performance -> Score

Logic:
Truth Tables

65 %

Figure 55 - Performance Data Item (Score)

Performance -> Score -> Text

Student Smith’s Performance:
Recommend more study in the area of Truth Tables

Figure 56 - Performance Data Item (Score -> Text)

Text -> Definitions

Tautology:

A sentence, F, is said to be valid for all interpretations

Figure 57 - Text Data Item (Definitions)

77

Text -> Examples

Construct a Truth Table by first identifying each
element in the equation; in this case p & q.

Figure 58 - Text Data Item (Examples)

Text -> Algorithm

Step 1:

Identify the atomic elements in the
desired logic equation...

Figure 59 - Text Data Item (Algorithm)

Text -> Theorems

(F =>G) <=>~((F) " (~G))

Figure 60 - Text Data Item (Theorems)

78

Text -> Notebook

Any Text Data Item from above

Figure 61 - Text Data item (Notebook)

Input/Example Choice/Algorithm Choice ->
Menu Selection

See the Requirements Document

Figure 62 - Input/Example Choice/ Algorithm Choice (Menu Selection)

Start ->

A signal to begin

Figure 63 - Start Data Item

79

APPENDIX C

HOT KEY SUMMARY

A. BEGIN
1. Begin is invoked by typing the letter B.
2. The Begin menu provides two options begin a lesson, Srart a lesson from the

first page in the lesson, or Return to the last active page of a previous lesson.

B. ESCAPE
1. Escape is invoked by typing the Esc key.

2. Esc key is accessible throughout the tutor to back out of menus.

C. EXAMS
1. Exams is selected from the main menu by typing the hot key, E.
2. A particular exam may be chosen by moving the cursor to the name of the

exam in the list and pressing the enter key.

D. HELP

1. Help is invoked by typing the leuer H.

2. With the exception of the Esc key, the operation of all hot keys is suspended
while help is active.

3. The help screen describes the hot keys.

4. Typing the Esc key will exit the help screen.

5. Typing the Esc key twice while the help screen is active will exit the Tutor and

return the user to the operating system.

80

E. INFORMATION

1. Information is invoked from the main menu by typing the letter 1.

2. Definitions, examples, thecrems, and proofs are selectable from the
information menu.

3. The selected material may be added to the user’s notebook or may be directed

to the printer for hard copy.
F. NOTEBOOK
1. Notebook is selected from the main menu by typing the letter N.
2. The notebook may be displayed or printed.
G. TOOLS
1. Tools, is selected from the main menu by typing the hot key T.
2. Diagrams, Reference, Calculator, or Problem Solver are available in the rools
menu.
H. QUIT
1. Quit is selected from the main menu by typing the letter Q.

2. Save the current position and exit may be selected from the quit menu

81

APPENDIX D

INSTALLATION PROCEDURES

The following files must reside in the same directory for the DMT to execute prop-
erly:
GOTH.CHR
LITT.CHR
SANS.CHR
TRID.CHR
EXPL.TXT
EXPL1.TXT
LENGTH.TXT
LOGIC.TXT
LOGICORG.TXT
LOGICSET.TXT
ATT.BGI
CGA.BGI
EGAVGA.BGI
HERC.BGI
IBM8514.BGI
PC3270.BGI
GRAPH.DEF
NOTHIN‘;.DEF
DMT.HLP
CALC.EXE
FREE.EXE

82

DMT.EXE
LSN.EXE
FLASHL.EXE
PRINT.EXE
EXAM.EXE
RULES.EXE
TABLE EXE
TXTMOD.EXE
VENN.EXE
VENNINFO.EXE

83

APPENDIX E

THE CODE: FILE "DMT.C"

/***
The Discrete Math Tutor (DMT)

Tl esis Project at the Naval Postgraduate School
1989-1990 by Keith Calcote and Rick Howard

LIBRARY CALLS:

atoi Turbo C Lib
chgonkey CXL Lib
error_exit DMT Utilities
eror_open_file DMT Utilities
exit DMT Utilities
findfirst Turbo C Lib
introduction_bar DMT Utilities
interface_bar DMT Utilities
hidecur CXL Lib
nommal _exit DMT Utilities
setkbloop CXL Lib
setonkey CXL Lib
set_video DMT Utilities
spawnl Turbo C Lib
strbtrim CXL Lib
top_bar DMT Utilities
videoinit CXL Lib
waitkey CXL Lib
wcenters CXL Lib
wclose CXL Lib
wfillch CXL Lib
wgetchf CXL Lib
whelpcat CXL Lib
whelpdef CXL Lib
whelpopc CXL Lib
whelpushc CXL Lib
winpbeg CXL Lib
winpdef CXL Lib
winpread CXL Lib
winputsf CXL Lib

84

LIBRARY CALLS (CONTINUED):

wmenubeg CXL Lib

wmenuend CXL Lib

wmenuget CXL Lib

wmenuitem CXL Lib

wmenuinext CXL Lib

wopen CXL Lib

wpickstr CXL Lib

wprintf CXL Lib

wprints CXL Lib

wputs CXL Lib

Wrjusts CXL Lib

witextattr CXL Lib

wtitle CXL Lib
PROGRAM CALLS:

calc.exe

exam.exe

flash.exe

Isn.exe

print.exe

rules.exe

table.exe

textmod.exe

venn.exe

venninfo.exe

DMT FUNCTIONS:
main
initialize
calculator
flash_cards
exams
line_inp_demo
logic_exam
main_menu
menudemo
notebook
open_back_wind
open_titl_wind
parse_cmd_line
pick_algorithm
pre_menul

DMT FUNCTIONS (CONTINUED):
print_notebook
quit_menu
rules
set_video
table
tools
venn
venninfo
view_notebook

COMPI:ETED: 4/12/90
PERSONS: Keith Calcote & Rick Howard

PURPOSE: To develop the user interface module of a Dicrete Math Intelligent
tutoring system that runs on a IBM PC or compatable.

**/

/* header files */

#include <d:\tc\includeN\conio.h>
#include <d:\tc\inclide\ctype.h>
#include <d:\tc\includeNdos.h>
#include <d:\tc\include\stdio.h>
#include <d:Mtc\include\stdlib.h>
#include <d:\tc\includestring.h>
#include <d:\tc\include\process.h>
#include <d:\tc\includeN\dir.h>
#include <d:\c\includehalloc.h>
#include "d:\cxNcxldef.h"
#include "d:\cxI\cxlkey.h"
#include "d:\cxIeximou h”
#include "d:\cxDNexlstr.h”
#include "d:\exDexlvid.h”
#include "d:\cxDNexiwin.h”
#include "d:\Mc\thesis\globals.h"
#include "d:\tc\thesis\defs.h"”
#include "d:\c\thesis\help.h"
#include "d:\tc\thesiswutil.h"”
#include "d:\c\thesisNink.c"
#include "d:NtcMhesis\video.h"

86

/* function prototypes */

static void initialize (void);,

static void calculator(void);
static void flash_cards(void);
static void exams(void);

static void line_inp_demo (void);
static void logic_exam(void);
static void main_menu (void);
static void menudemo(void);
static void notebook(void);

static void open_back_wind(void);
static void open_titl_wind(void);
static void parse_cmd_line(int argc,char *argv[], int *start_up);
static void pick_algorithm(void);
static void pre_menul (void);
static void print_notebook(void);
static void quit_menu(void);
static void rules(void);

static void set_video(void);

static void table(void);

static void tools(void);

static void venn(void);

static void venninfo(void);

static void view_notebook(void);

87

/**

FUNCTION : main

CALLED BY: NONE

CALLS : See Declarations
MODIFIED : 4/12/90
PERSON : Rick Howard

PURPOSE : See Declarations

Aokt R kRO k ROk ook kot OR R ROk Rk ek kR Rk kK ok |

void main(int argc,char *argv([])
{
/*
Initialize the CXL video system, define hot keys and
define the system’s help screen attributes.
*/

initialize();

/*
Process the command line arguments.
*/

parse_cmd_line(argc,argv,&start_up);

/*
If this is the initialial start of the program,
display the title screen.

*/

if (start_up){
open_back_wind(); /* Background to Title Screen */
set_video(); /* Check for mono, CGA or EGA screen */
open_titl_wind(); /* Display the title */
introduction_bar(); /* Display help bar */
main_menu(); /* Display the main menu */

)

normal_exit(). /* Terminate the program */

88

/***

FUNCTION : initialize

CALLED BY: dmt

CALLS : videoinit
setonkey
whelpdef

MODIFIED : 4/12/90

PERSON : Rick Howard

PURPOSE : Initializes CXL’s video system, defines all hot keys and the
the attributes for all help screens.

**/

static void initialize(void)

{

/*

Initialize the CXL video system.
*/
videoinit();
/*

Define all hot keys.
*/
setonkey(0x30062,begin_Isn,0); /¥ B */
setonkey(0x1265,exams,0); /*E %/
setonkey(0x1769,information,0); /1 *
setonkey(0x1474 to0ls,0); /*T*
setonkey(0x3 L6E notebook,0); /%N */
setonkey(0x 107 I,quit_menu,0); /*Q ¥/
setonkey(0x2D78,confinn_quit,0); [¥ X */
setonkey(0x326D,memory,0); [*M */
/*

Define the help screen attributes.
*/

whelpdef("DMT.HLP",0x2368 BLACKI_LGREY ,BLACKI!_LGREY,
LBLUE!_LGREY,LREDI_LGREY ,pre_help),

89

/**

FUNCTION : calculator
CALLED BY: tools
CALLS : spawnl
MODIFIED : 4/12/90

- PERSON : Rick Howard

PURPOSE : Suspends the DMT interface program and calls the calc.exe
program

AR AR AR AR AR RO AR R AR R AR R R R ROk |

static void calculator(void)

{
spawnl(P_WAIT,"calc.exe","calc.exe",NULL),

/*
Retumns the user to the interface if he is not inside a lesson;
otherwise, returns the user to the lesson.
*/
if (from_lIsn)
menudemo();
else
exit(0);

90

/**

FUNCTION . flash_cards
CALLED BY: tools
CALLS : spawnl
MODIFIED : 4/12/90
PERSON : Rick Howard

PURPOSE : Suspends the DMT interface program and calls the flash.exe
program

/**

static void flash_cards(void)

{
spawnl(P_WAIT,"flash.exe”,"flash.exe" NULL);

/*
Returns the user to the interface if he is not inside a lesson;
otherwise, returns the user to the lesson.
*/
if (from_Isn)
menudemo();
else
exit(0);

91

JR ARk ok okok koo ok ok ok ok iRkl kok ok kiRl kiR ok ek ok ook
FUNCTION : exams
CALLED BY: Hot key defined in function initialize

CALLS : wmenubeg
wmenuitem
wmenuend
wmenuget
error_exit

MODIFIED : 4/12/90
PERSON : Rick Howard

PURPOSE : Defines the Exam menu and presents the menu to the user

**/

static void exams(void)

{

int selection;

wmenubeg(2.31,4,42,0,YELLOWI|_BLUE,YELLOWI|_BLUE,add_shadow);

wmenuitem((.0,"Logic Exam",’L",10,0,logic_exam,0,H_EXAMS),

wmenuend(10,M_PDIM_SAVE,0,1, YELLOWI|_BLUE,LCYANI_BLUE,0
,YYELLOWI_LGREY);

selection=wmenuget();
if(selection==-1&&_winfo.ermo>W_ESCPRESS) error_exit(1);

92

/**

FUNCTION : logic_exam
CALLED BY: exams

CALLS : chgonkey
wopen
error_exit
add_shadow
wtitle
winpbeg
wprints
windef
winpread
atoi
wputs
wgetchf
wclose
spawnl
exit

MODIFIED : 4/12/90
PERSON : Rick Howard

PURPOSE : Allows user to take the logic exam by first asking how many
questions he desires. Then it suspends the DMT program
while the Q_&_A exe program executes.

!*************i***/

static void logic_exam(void)

{

struct _onkey_t *k1; /* Linked list of hot keys */
char *num_questions; /* # of exam questions the user desires */
register int response; /* Records the user’s response */
/*

Assign the current hot key list to k1 and set the current hot
key list to NULL.

*/
k1 = chgonkey(NULL);

93

/*
Open a window to retrieve the desired number of examn questions
from the user.
*/
if(!'wopen(10.8,17,70,1 LCYANI_BLUE, LCYANI_BLUE)) error_exit(l);
add_shadow();
wtitle("[Enter the Number of Exam Questions Desired]", TLEFT, LCYANI_BLUE);,

/*

Open window to ask how many exam questions the user desires.
*/
do{

/*

Define the window attributes.
*/
winpbeg(LGREENI|_LGREY ,WHITE!_LGREY);

/*
Display prompts and define fields.
*/
wprints(1, 3, WHITEI_BLUE, "How many exam questions do you wish?");
winpdef(1, 41, num_questions, "##",0,0,NULL,0);

/*

Mark end of form and process it.
*/
if(winpread()) break;

/*
Verify user’s answer.
*/
if ('wopen(15,24,19,57,0, WHITEI_CYAN,WHITEI_CYAN)) error_exit(1);
add_shadow();
wputs('\n Is this information correct? N033AN)76 Y\b");
response = wgetchf("YN",’Y’);
wclose();

}

while (response !="Y");

94

m

/*
Reset the hot key list.
*/
chgonkey(kl).
/*
Suspend the DMT progiam and launch the Q_&_A .exe program.
*/
spawnl(P_WAIT."Q_&_A.exe","Q_&_A.exe",
num_questions,"test1.txt","expll.txt",NULL);

/*
Returns the user to the interface if he is not inside a lesson;
otherwise, returns the user to the lesson.
*/
if (from_Isn)
menudemo();
else
exit(0);
wclose();

95

Rtk ook ook ok R ROk ok e s ol ok ok ok ok dot b R AR R R R ok ok

FUNCTION : main_menu
CALLED BY: dmt

CALLS : whelpushc
wmenubeg
wmenuitem
wmenuend
wmwnuget
whelpopc

MODIFIED : 4/12/90
PERSON : Rick Howard

PURPOSE : Defines and executes the main menu on the title screen.

**/

static void main_menu(void)

{

/%

Push the initial help screen onto the help screen stack.
*/
whelpushc(H_INITIAL);

/*
Define and process the main menu.

.

/
wmenubeg(13,27,16,53,0,LBLUEI_BLUE,LBLUEI_BLUE pre_menul);
wmenuitem((),0,"Start Demo",’S’,1 M_CLOSB menudemo,0,0);
wmenuitem([.0,"Exit demo” ,’E’,6.0,NULL ,0,0);
wmenuend(1,M_VERT,25,3 LCYANI_BLUF WHITEI_BLUE,0,BLUEI_LGRELY),

if(wmenuget()==-1) if(_winfo.ermo>W_ESCPRESS) error_exit(1);

/* pop the global help category off of the stack, and into the void */
whelpopc();

96

SRR R 4 ok ook o koo ok ek kRO etk kR ook ko R R Rk e Aok

FUNC ION : menudemo

CALLED BY: calculator
flash_cards
logic_exam
main_menu
pickalgorithm
table
rules
venn
venninfo
view_notebook

CALLS : whelpushc
wopen
error_exit
top_bar
interface_bar
waitkey

MODIFIED : 4/12/90
PERSON : Rick Howard

PURPOSE : Presents the interface screen and waits for the user to hit
a hot key.

**/

static void menudemo(void)
{
/*
Open the interface window.
*/
if((w[1])=wopen(2,0,23,79,1 YELLOWI_BLUE YELLOWI|_BLUE))==0)
error_exit(1);

97

/*
Draw the menu bar and the help bar.
*/
top_bar();
interface_bar();

/*
Push the user interface help scrren onto the help stack.
*/
whelpushc(H_USER_INTERFACE);

/*

Wait for the user to choose a hot key.
*/
while (waitkey() 1= "1");

98

[tk sokeseotesokseoksok sk et ol ol skttt s ks skt o ke ol ok stk ok st skl sl ke ke ok ke ok
FUNCTION : notebook
CALLED BY: parse_cmd_line

CALLS : wmenubeg
wmenuitem
wimenuend
whelpcat
error_exit

MODIFIED : 4/12/90

PERSON : Rick Howard

PURPOSE : Defines the Notebook menu and presents the menu to the user.

**/

static void notebook(void)

{

int selection;

wmenubeg(2.56,5,71,0,YELLOWI_BLUE,YELLOWI|_BLUE, add_shadow);
wmenuitem(0.0,"View Notebook",’V’,60,0,

view_notebook,0,H_VIEW_NOTEBOOK_HELP);
wmenuitem(1,0,"Print Notebook","P’,61,0,
print_notebook,0,H_PRINT_NOTEBOOK);,
wmenuend(60.M_PDIM_SAVE, 0,1, YELLOWI_BLUE,LCYANI_BLUE,0
SYELLOWI|_LGREY);,

selection=wmenuget();

if(selection==-1&&_winfo.ermo>W_ESCPRESS) error_exit(1);
whelpcat(H_USER_INTERFACE),

99

/***
FUNCTION : open_back_wind
CALLED BY: dmt
CALLS : wopen
wprintf
error_exit
MODIFIED : 4/12/90
PERSON : Rick Howard
PURPOSE : Draws the background for the title screen

Aok ok kiR doR kool ook kot otk ok ookl ok kol kR ok ok Rk ook |

static void open_back_wind(void)
{

register int i;
if(!wopen(0,0,23,79,5,0, LGREENI_GREEN)) error_exit(1);

for(i=1;i<320;i++) wprintf("\033F%cDMT ".i),
)

100

okttt sk ok R ok ok ok ks kol R R Rk kR Rk ook KRR R R R ko ok

FUNCTION : open_titl_wind

CALLED BY: dmt

CALLS . wopen
efrror_exit
add_shadow
weenters

MODIFIED : 4/12/90

PERSON : Rick Howard

PURPOSE : Draws the title window for the title screen.

**/

static void open_titl_wind(void)

{

if('wopen(1,12,9,67,0,LREDI_MAGENTA ,LREDI_MAGENTA)) error_exit(1);

add_shadow():

weenters(0, WHITEI_ MAGENTA,"Welcome to the Discrete Math Tutor (DMT)
Prototype!");

wcenters(2,LCYANI_MAGENTA,"DMT: 1989-1990");

wcenters(3,LCYANI_MAGENTA,"by");

weenters(4, LCY ANI_ MAGENTA,"Rick Howard");

wcenters(5,LCYANI_MAGENTA,"&");

wcenters(6,LCYANI_MAGENTA,"Keith Calcote");

101

/**
FUNCTION : parse_cmd_line
CALLED BY: dnmt

CALLS : tools
quit_menu
notebook

- MODIFIED : 4/12/90

PERSON : Rick Howard

PURPOSE : Allows the user to call specific funtions residing in the DMT
program and exit while the Isn program is running. For

example, a user taking the logic lesson can invoke the tools
function in the DMT.

**/

static void parse_cmd_line(int argc,char *argv[],int *start_up)

{

char *p; /* The character that represents the cmd line argument */

*
/ If there exists command line arguments...
*
if/(argc >1)
‘ p=argv[l];
if (*p=="T) I (*p=="1"))
‘ from_lsn = TRUE;

tools();
from_lsn = FALSE,
*start_up = 0;

}
else if (*p=="Q")
{
quit_menu();
*start_up =0,

)

102

else if (*p =="N")

{
from_lsn = TRUE;
notebook();
from_lsn = FALSE;
*start_up = 0;

103

Aok ok s ok kR OR ROk ROk R RO ook ko ok

FUNCTION : pre_menul
CALLED BY: main_menu

CALLS : hidecur
add_shadow

MODIFIED : 4/12/90
PERSON : Rick Howard
PURPOSE : Hides the cursor and adds a shadow to a menu.

etttk oot Rolokk ool ookl ok SOl koo kol kst ooRokok ok Rk ook ok |

static void pre_menul(void)

{
hidecur();
add_shadow();

)

104

/**

FUNCTION : print_notebook
CALLED BY: notebook

CALLS : chgonkey
wopen
error_exit
add_shadow
wtitle
winpbeg
wprints
winpdef
winpread
wputs
wgetchf
findfirst
spawnl
error_open_file
wclose

MODIFIED : 4/12/90
PERSON : Rick Howard

PURPOSE : Queries the user for his personalized notebook name and
sends that file to the program print.exe.

**/

static void print_notebook(void)

{

int done; /* Used to indicate if the notebook

file can be found */
struct ffblk ffblk; /* Space filler used in the

findfirst function */
struct _onkey_t *k1; /* Points to the current hot-key list */
register int response; /* Accepts user’s response */

105

/*
Set k1 = to the current hot-key list and disable all
hot-key definitions.

*/

k1 = chgonkey(NULL);

/*
Open the window.
*/
if('wopen(10.8,17,70,1 LCYANI_BLUE, LCYANI_BLUE)) error_exit(1);
add_shadow():
wtitle("[Name Your Personalized Notebook]", TLEFT, LCYANI|_BLUE);

/* Display prompts and define fields. */
do|
winpbeg(LGREENI_LGREY ,WHITEI_LGREY);,
wprints(1, 3, WHITEI_BLUE, "What is your Notebook Name?"),
winpdef(1, 35, notebook_name, "WWWWWWWWWWWW" 0,0 NULL,0);

/*

Mark end of forin and process it.
*/
if(winpread()) break;

/*
Ensure that the user information is correct.
*/
if ('wopen(15,24,19,57,0, WHITEI_CYAN,WHITE!_CYAN)) error_exit(});
add_shadow();
wputs("™\n Is this information correct? \)33AN076 Y\b");
response = wgetchf("YN",”Y’);
wclose();

)

while (response !="Y");

/*

Find the user’s notebook in the current directory.
*/
done = findfirst(notebook_name, &ffblk, 0);

106

/*
If the user’s notebook is found in the current directory,
send the user’s notebook name to the program print.exe.
Otherwise. display an error message.

*/
if (done ==)|
spawnl(P_WAIT, "print.exe”, "print.exe”, notebook_name, NULL);
)
else

error_open_file(notebook_name);

/*
Close the window and enable the hot-key list again.
*/
wclose();
chgonkey(k1);

107

/***

FUNCTION : quit_menu

CALLED BY: initialize
parse_cmd_line

CALLS : wmenubeg
wmenuitem
wmenuend
wmenuget
error_exit
whelpcat

MODIFIED : 4/12/90
PERSON : Rick Howard

PURPOSE : Displays the quit menu to the user

ket ot st el sk el o sk ek ok ok sttt stk el kol okt sl koot e ko ok f

static void quit_menu(void)
{

int selection; /* The user’s menu selection */

/*
Define the menu structure.
*/
wmenubeg(2,55,5,77,0,YELLOWI_BLUE,YELLOWI_BLUE,add_shadow);
wmenuitem(0,0,"Save Current Position",’!’,70,0,
do_nothing,0,LH_UNAVAILABLE),
wmenuitem(1,0,"Exit",’E’,71 ,M_CLOSE,confirm_quit,0,H_EXIT);
wmenuend(70,M_PDIM_SAVE,0,1, YELLOWI_BLUE,LCYANI_BLUE,0
JYELLOWI|_LGREY);,

/*

Process the menu
*/
selection=wmenuget(),
if(selection==-1&&_winfo.ermo>W_ESCPRESS) error_exit(1);
whelpcat(H_USER_INTERFACE);

108

ARk R s sk s sk ok e e e ook kR R kAR ook el ko

FUNCTION : table
CALLED BY: tools

CALLS : spawnl
menudemo
exit

MODIFIED : 4/12/90
PERSON : Rick Howard

PURPOSE : Suspend the dmt.exe program and launch the table.exe ; sogram.

******************#***/

static void table(void)

{
spawnl(P_WAIT,"table.exe","table.exe",NULL);

/fk
Returns the user to the interface if he is not inside a lesson;
otherwise, returns the user to the lesson.
*/
if (from_Isn)
menudemo();
else
exit(0);

109

[kR ok R ek ook ok Rk Rokok ool ook R Sk RO SOR R RO ORR R

FUNCTION : tools

CALLED BY: initialize
parse_cmd_line

CALLS : wmenubeg
wmenuitem
wimenuend
wimenuget
error_exit
whelpcat

MODIFIED : 4/12/90
PERSON : Rick Howard

PURPOSE : Displays the tools menu to the user.

**/

static void tools(void)

{

int selection; /* The user’s menu selection */

/*

Define the menu structure.
*/
wmenubeg(2.42,7,57,0,YELLOWI_BLUE,YELLOWI_BLUE,add_shadow);
wmenuitem(0.0,"Diagrams”,"D’,10,0,NULL,0,H_PICTURES);

wmenubeg(8,42,10,56,0,YELLOWI_BLUE , YELLOW!_BLUE add_shadow);

wmenuitem(0,0," Venn Diagrams”,’V’,51,0,venn,0,H_VENN_DIAGRAM_PICS);

wmenuend(51,M_PDIM_SAVE, 0,1, YELLOWI_BLUE,LCYANI BLUE0
,YELLOWI_LGREY),

wmenuitem(1.0,"Reference”,’R’,11,0, NULL,0,H_REFERENCE);
wmenubeg(8,42,11,55,0,YELLOWI!_BLUE,YELLOWI_BLUE , add_shadow);

wmenuitem(0,0,"Truth Tables",'T*,70.0,
do_nothing,0,H_TRUTH_TABLE_REF),

110

wmenubeg(10,42,13,48,0,YELLOWI_BLUE,YELLOWI_BLUE.add_shadow),
wmenuitem(0.,0,"Drill","D’,80.0.flash_cards, 0, H_TRUTH_TABLE_DRILL):
wmenuitem(1.0."Rules",’R’,81.0.rules,00H_TRUTH_TABLE_RULES);
wmenuend(80,.M_PDIM_SAVE, 0,1, YELLOWI_BLUE ,LCYANI_BLUE,0
JYELLOWI_LGREY);

wmenuitem{1,0,"Venn Diagrams"”,”V’,71,0,
venninfo,0,H_TRUTH_TABLE_REF);
wmenuend(70,M_PDIM_SAVE,0,1,YELLOWI_BLUE,LCYANI_BLUE,0
JYELLOWI_LGREY);

wmenuitem(2.0,"Calculator”,’C’,12,0,calculator,0,H_CALCULATOR),
wmenuitem(3.0,"Problem Solver”,’P’. 13,0,
do_nothing 0,H_PROBLEM_SOLVER),

wmenubeg(8.42,10.55,0.YELLOWI_BLUE,YELLOWI_BLUE,add_shadow):
wmenuitem((.0,"Truth Tables","T",40,0,
table, 0OH_TRUTH_TABLE_PROBLEM_SOLVER):
wmenuend(40M_PDIM_SAVE, 0,1, YELLOWIBLUE,LCYANI_BLUE.0
, YELLOWI| LGREY);

wmenuend(10.M_PDIM_SAVE 0,1, YELLOWI_BLUE,LCYANI_BLUE,0
JYELLOWI_LGREY),
/*
Process the menu.
*/
selection=wmenuget():
if(selection==-1&& _winfo.ermo>W_ESCPRESS) error_exit(1);
whelpcattH_USER_INTERFACE),

111

JRFAAAAAAAAA AR AR AAARAAAAR IR AR A AR AAKIAAAAA A A A A A AAAAAAAA A AAAAAAA A K

FUNCTION : rules
CALLED BY: tools

CALLS : spawnl
menudemo
exit

MODIFIED : 4/12/90
PERSON : Rick Howard

PURPOSE : Suspend the dmt.exe program and launch the rules.exe program.

Stttk ot oo kRO OR ol ok s iRk Aotk IR R R sk RO KRRkl kAR ROk |

static void rules(void)

{
spawnl(P_WAIT,"rules.exe","rules.exe" ,NULL);

/*
Returns the user to the interface if he is not inside a lesson;
otherwise, returns the user to the lesson.

*/

if (Mfrom_Isn)
menudemof();

else

exit(0),

/**

FUNCTION : venn
CALLED BY:: tools

CALLS : spawnl
menudemo
exit

MODIFIED : 4/12/90
PERSON : Rick Howard

PURPOSE : Suspend the dmt exe program and launch the venn.exe program.

**/

static void venn(void)

{
spawnl(P_WAIT,"venn.exe","venn.exe",NULL),

/*
Returns the user to the interface if he is not inside a lesson;
otherwise, returns the user to the lesson.

*/

if (from_Isn)
menudemo();

else

exit(0);

Rk ok Aok ok ok kol ookl ool R ook oooolol ookl dok ool

FUNCTION : venninfo
CALLED BY: tools

CALLS : spawnl
menudemo
exit

MODIFIED : 4/12/90

PERSON : Rick Howard

PURPOSE : Suspend the dmt.exe program and launch the venninfo.exe
program.

**/

static void venninfo(void)

{
spawnl(P_WAIT,"venninfo.exe","venninfo.exe" ,NULL);

/*

Returns the user to the interface if he is not inside a lesson;
otherwise, returns the user to the lesson.
*/
if ({from_lIsn)

menudemo();
else

exit(0);

114

/**

FUNCTION : view_notebook
CALLED BY: notebook

CALLS : chgonkey
wopen
error_exit
add_shadow
wtitle
winpbeg
wprints
winpdef
winpread
wputs
wgetchf
wclose
findfirst
strbtrim
spawnl
menudemo
exit
error_open_file

MODIFIED : 4/12/90
PERSON : Rick Howard

PURPOSE : Prompts the user for his personalized notebook name and sends
that name to the Isn.exe program.

***/

static void view_notebook(void)

struct ffblk ffblk; /* Used as a place filler in the
findfirst function */
struct _onkey_t *kl; /* Points to the defined hot-key list */

115

int done; /* Used to indicate if the user’s
personalized notebook name is found in

the current directory */

register int response; /* Holds the user’s response */
/*

k1 points to the current hot-key list and all hot-keys are

disabled.
*/
k! = chgonkey(NULL),
/*

Open the window.
*/

if(!wopen(10.8,17,70,1, LCYANI_BLUE, LCYANI_BLUE)) error_exit(1);
add_shadow();
wtitle("[Name Y our Personalized Notebook]", TLEFT, LCYANI_BLUE);

/*
Display prompts and define fields.
*/
dof
winpbeg(LGREENI_LGREY ,WHITEI_LGREY);

wprints(1, 3, WHITEI_BLUE, "What is your Notebook Name?");

winpdef(1, 35, notebook_name, "WWWWWWWWWWWW" 0,0 NULL,0);

/*

Mark end of form and process it.
*f
if(winpread()) break;

116

/*
Ensure that the user information is correct.
*/
if ('wopen(15,24,19,57,0,WHITEI_CYAN,WHITEI_CYAN)) error_exit(1);
add_shadow();
wputs("\n Is this information correct? \033A\076 Y\b");
response = wgetchf("YN","Y");
wclose();

}
while (response !="Y");

J*
Enable the hot-key list.

*/

chgonkey(k!l);

/*

Find the user’s notebook in the current directory.
*/
done = findfirst(notebook_name, &ffblk, 0);

/*
If the user’s notebook is found in the current directory,
modify it with the program txtmod.exe and send the
results to the program Isn.exe. Otherwise, display an
error message.

*/

if (done == 0)

{
strbtrim(notebook_name);
spawnl(P_WAIT,"txtmod.exe","txtinod.exe" ,notebook_name,

"notebook.out" NULL);

spawnl(P_WAIT,"Isn.exe","lsn.exe”,"notebook.len","notebook.txt",NULL);

117

/*
Retums the user to the interface if he is not inside a lesson;
otherwise, retums the user to the lesson.
*/
if (!from_lsn)
menudemo();
else
exit(0);
}
else
error_open_file(notebook_name);

/*
Close the window.
*/

wclose();

118

APPENDIX F

THE CODE: FILE "LSN.C"

/*******************************#***************************************

The Discrete Math Tutor (DMT)
Thesis Project at the Naval Postgraduate School
1989-1990 by Keith Calcote and Rick Howard

LIBRARY CALLS:
atoi Turbo C Lib
error_exit DMT Utilities
exit DMT Utilities
fclose Turbo C Lib
fopen Turbo C Lib
find_card Link Utilitites
fread Turbo C Lib
fseek Turbo C Lib
getche Turbo C Lib
initiailize linked_list Link Utilities
setonkey CXL Lib
set_video DMT Utilities
spawnl Turbo C Lib
top_bar DMT Utilities
wactiv CXL Lib
waitkey CXL Lib
wborder CXL Lib
wclose CXL Lib
whelpcat CXL Lib
whelpdef CXL Lib
wmenubeg CXL Lib
wmenuend CXL Lib
wimenuget CXL Lib
wmenuitem CXL Lib
wmessage CXL Lib
wopen CXL Lib
wprintf CXL Lib
write_file Link Utilitites

119

PROGRAM CALLS:
dmt.exe

LSN FUNCTIONS:
continue_Jsn
enter_page
Isn_bar
main
notebook
pageclr
page_down
page_up
quit
guit_menu
save_position
top_bar
tools

COMPLETED: 4/12/90
PERSONS: Keith Calcote & Rick Howard

PURPOSE: To display a Isn inside the DMT user interface.

Aok AR AR AR AR R R R RO R R R ARk R K |

120

/* Header Files */

#include <stdio.h>
#include <process.h>
#include <bios.h>
#include <alloc.h>
#include <dir.h>
#include "d:\cxN\cxlIstr.h"

#include "d:\cxI\cxlwin.h"
#include "d:\cxN\cxlkey.h"
#include "d:\cxNcxlvid.h"
#include "d:\tc\thesis\globals.h"
#include "d:\tc\thesis\defs.h"
#include "d:\tc\thesis\help.h"
#include "d:\tc\thesis\util.h"
#include "d:\tc\thesis\link.c"
#include "d:\tc\thesis\video.h"

-

121

*/

/* function prototypes */

static void add_shadow(void);
static void continue_lsn(void);
static void error_exit(int errnum);
static void enter_page(void);
static void information(void);
static void notebook(void);
static int pageclr(void);

static void page_down(void);
static void page_up(void);
static void quit(void);

static void quit_menu(void);
static void save_position(void);
static void set_video(void);
static void tools(void);

/* */
/* Constants */

#define LEN 50

#define PAGEL 1000

s - ¥

122

/* Global Variables */

static WINDOW w{101: /* Array of window handles */

static FILE *fptrl, /* Pointer to the lesson length file */

static FILE *fptr2 ; /* Pointer to the lesson text file */

static int ch; /* Used to get the user’s response */

static int recno ; /* Indicates the page number for the lesson */

static int temp,templ ; /* Used to calculate the user’s desired page
p p pag
number. */

static char page[PAGEL] ; /* Holds the contents of the lesson */
static char *ARGS[3]; /* Holds the arguments needed to save the

user’s position in any lesson */

/* */

123

/**

FUNCTION : main

CALLED BY: NONE

CALLS : See Declarations

MODIFIED : 4/12/90

PERSON . Rick Howard & Keith Calcote
PURPOSE : See Declarations

**/

void main(int argc,char *argv{])

{

/*

Define all hot keys.
*/
setonkey(0x5100,page_down,0); /* Page down */
setonkey(0x4900,page_up,0); /* Page up */
setonkey(0x1900,enter_page,0), /¥ ALTP */
setonkey(0x3002,begin_lsn,0); /*B */
setonkey(0x1769,information,0); 1%/
setonkey(0x1474 tools,0); [*T*/
setonkey(0x3 16E,notebook,0); [¥ N */
setonkey(0x1071,quit_menu,0); /¥ Q¥
setonkey(0x2D78.quit,0); /X *
setonkey(0x326D , memory,0); J*M */
/*

Define the help screen attributes.
*/

whelpdef("DMT.HLP",0x2368 BLACKI_LGREY.BLACK! LGREY,
LBLUEI_LGREY,LREDI_LGREY pre_help);

/*
Draw the menu bar and the help bar.
*/
top_bar();
Isn_bar();

/*
Check for mono, CGA or EGA screen.
*/

set_video();

124

/*
Open a window to display the user selected lesson.
*/
if((w[1]=wopen(2,0,23,79,3 WHITEI_CYAN ,WHITE! CYAN))==0)
error_exit(1);
wmessage("'[PgUp/PgDn]",BT_BORD,9,YELLOWI|_BLACK);

/*
Open the Lesson Length file and store the name for use by
the save_position function.
*/
if((fptr1=fopen(argv[1],"r")) ==NULL.)
{
wprintf("CAN'T OPEN THIS FILE:
Jos\n" ,argv|1]);
waitkey();
exit(0);
)
else
ARGS[1] = argv|[l];

/*
Open the Lesson Text file and store the name for use by
the save_position function.
*/
if((fptr2=fopen(argv[2],"rb")) ==NULL)
{
wprintf("CAN'T OPEN THIS FILE:
Jos\n", argv([2]).
waitkey();
exit(0);
)

else
ARGS[2] = argv(2];

/*
Read the lesson length file.
*/
fread(&length.sizeof(length),1 fptrl);

/*

Determine the user defined page number.
*/
if(argv[3] '= NULL)

recno = atoi(argv[3]);

else

recno = |;
/*

Begin the lesson.
*/

continue_lsn();

126

/**

FUNCTION : continue_lsn

CALLED BY: - 1Isn
enter_page
notebook
page_down
page_up
tools

CALLS whelpcat
wactiv
wmessage
wprintf
fseek
pageclr
fread
wputns
waitkey
werrmsg

MODIFIED : 4/12/90

PERSON : Rick Howard & Keith Calcote

PURPOSE : Displays the proper page number to a lesson based upon
the user’s input.

***/

static void continue_lsn(void)

{
/*
Set the help screen that applies to any generic lesson.
*/
whelpcat(H_LSN_HELP);

/*
Make the lesson window the active window.
*/

wactiv(w]1]);

/*

Display a help message across the border of the lessen window.
*/
wmessage("[PgUp/PgDn]",BT_BORD,9,YELLOWI_BLACK),

127

/*
Display the page number.
*/
wprintf("\"\n\N\\N\\\\tpage Z%d\\n", recno) ;

/*
Get the current page from disk and display it in the active window.
*/
offset = lengthlrecno} ;
if(fseek(fptr2,offset,0) !=0)
{
wprintf("CAN’T MOVE POINTER THERE") ;
exit(0) ;
}
pageclr() ;
fread(page,length|recno+1]-length[recno], 1,fptr2) ;
wputns(page,length[recno+1]-length[recno});

/*

If last page of the lesson, cycle back to the first page.
*/
if(recno > length{0])

recno = 1;

/*

Wait for the user’s response.
*/
while (waitkey() != 0x4C35),

128

/**

FUNCTION : enter_page
CALLED BY: Isn
CALLS wprintf
getche
continue_lsn
MODIFIED : 4/12/90
PERSON : Rick Howard & Keith Calcote
PURPOSE : Allows the user to choose any page in the lesson to view.

**/

static void enter_page(void)

{

/*

Initialize some temporary variables.
*/
temp=0;

templ = recno ;
wprintf("\rEnter page number: ") ;
while((ch = getche()) '= 13)
{
if (ch<=57 && ch>=48)
{
temp = temp*10 + ch-48§ ;
recno = temp ;

)

else

{
wprintf(" NOT A VALID PAGE NUMBER \n"),

recno = templ ;
break ;

)
)

if(recno > length{0])
recno =1 ;

/*
Display the selected page.
*/
continue_lsn();

129

/**

FUNCTION :
CALLED BY:
CALLS

MODIFIED :
PERSON :
PURPOSE :

notebook

Isn

spawnl

top_bar

Isn_bar

wactiv

wborder

continue_lsn

4/12/90

Rick Howard

Suspends the 1sn.exe program and calls the dmt.exe program
to utilize the user interface’s notebook functionality.

ek kRO o ok ok ok okl kol ok kR ROk R

static void notebook(void)*

{

/*

Set up the command line for the dmt.exe program.

*/

char *args[31;

args[0] = "dmt.exe";
args|1] = "dmt.exe”;

args[2] = "N";
args[3] = NULL;

/*

Call the dmt.exe program.

*/

spawnl(P_WAIT ,args[0],args[1], args[2],NULL),

/*

Re-establish the lesson screen.

*/
top_bar();
Isn_bar();

wactiv(w[1]):

wborder(3);

continue_lsn();

130

/**

FUNCTION :
CALLED BY:
CALLS
MODIFIED :
PERSON :
PURPOSE :

pageclr

continue_lsn

NONE

4/12/90

Rick Howard & Keith Calcote
Clears the page buffer

#**************/

static int pageclr(void)

{
)

*page = "x00" ;

/*************************************#********************************

FUNCTION :
CALLED BY:
CALLS
MODIFIED :
PERSON :
PURPOSE :

page_down

Isn

continue_lsn

4/12/90

Rick Howard & Keith Calcote

Sets the lesson page number to the next page or, if the
current page is the last page of the lesson, sets the
lesson page number to page 1.

***/

static void page_down(void)

{

recno ++ ;

if(recno > length{0])

recno= 1 ;

continue_lsn();

}

131

/***

FUNCTION : page_up

CALLED BY: Isn

CALLS continue_lsn

MODIFIED : 4/12/90

PERSON : Rick Howard & Keith Calcote

PURPOSE : Sets the lesson page number to the previous page or, if the

current page is the first page of the lesson, sets the
lesson page number to the last page of the lesson.

**/

static void page_up(void)
{
fecno -
if(recno <= 0)
recno = length[0] ;
continue_lsn();

)

132

/**

FUNCTION : quit_menu

CALLEDBY: . Isn

CALLS wmenubeg
winenuitem
wmenuend
wmenuget
error_exit
whelpcat

MODIFIED : 4/12/90

PERSON : Rick Howard

PURPOSE : Defines the quit menu structure.

**/

static void quit_menu(void)

{

int selection; /* The user’s menu choice */

/%
The menu structure,

*/

wmenubeg(2,55,6,77,0,YELLOWI_BLUE,YELLOW!_BLUE,add_shadow);

wmenuitem(0,0,"Save Current Position",’S’, 70, M_CLOSE,

save_position,0,H_SAVE_POSITION),

wmenuiten(1,0,"Display Results”,’D’,71, M_CLOSE,do_nothing,0,0);

wmenuitem(2.0,"Exit",’E’,72 M_CLOSE,quit.0, H_EXIT),

wmenuend(70.M_PDIM_SAVE,0,1, YELLOW|_BLUE,
LCYANI_BLUE,0,YELLOWI_LGREY);

/*

Process the menu
*/
selection=wmenuget();
if(selection==-1&&_winfo.ermo>W_ESCPRESS) error_exit(1);
whelpcat(tH_LSN_HELP);

133

/**

FUNCTION : save_position
CALLED BY: quit_menu
CALLS initialize_linked_list
find_card
write_file
quit
MODIFIED : 4/12/90
PERSON : Rick Howard
. PURPOSE : Saves the user’s current page number and lesson name to

disk so that the user may retumn to it later.

**/

static void save_position(void)
{
int start_Isn = FALSE; /¥ Used in the find_card function indicating
the user is ending a session and not
beginning one */
/*
Bring in all the saved positions from disk and place into
a linked list.
*/
initialize_linked_list();

/*
Get the user’s SSN. Place the SSN, the lesson name and lesson
page number into the linked list.

*/

find_card(ARGS[1],ARGS[2],recno, start_Isn);

/*

Write the linked list to disk.
*/
write_file("cardfile.dat");

/*

Exit the program.
*/
quit();

134

/***

FUNCTION : tools

CALLED BY: Isn

CALLS spawnl
top_bar
Isn_bar
wactiv
wborder
continue_lsn

MODIFIED : 4/12/90

PERSON : Rick Howard

PURPOSE : Suspends the Isn.exe program and calls the dmt.exe program

to utilize the user interface’s tools functionality.

**/

static void tools(void)
{
/*
Set up the command line for the dmt.exe program.
*/
char *args[3];
args|0] = "dmt.exe";
args[1] = "dmt.exe";
a.l‘gS[Z] _ "T":
args(3] = NULL,

/*
Call the dmt.exe program.
*/
spawnl(P_WAIT args[0],args[1], args|2], NULL),

/*
Re-establish the lesson screen.
*/
top_bar();
Isn_bar(),
wactiv(w[1]):
wborder(3);
continue_lsn();

135

APPENDIX G

THE CODE: FILE "UTIL.H"

/**
The Discrete Math Tutor (DMT)

Thesis Project at the Naval Postgraduate School
1989-1990 by Keith Calcote and Rick Howard

LIBRARY CALLS:

chgonkey CXL Lib
clearkeys CXL Lib
error_exit DMT Utilities
execl Tubro C Lib
exit . Turbo C Lib
fclose Turbo C Lib
fopen Turbo C Lib
fprintf Turbo C Lib
gotoxy Turbo C Lib
hidecur CXL Lib
printf Turbo C Lib
return Turbo C Lib
showcurs CXL Lib
spawnl Turbo C Lib
srestore CXL Lib
waitkey CXL Lib
wcenters CXL Lib
wclose CXL Lib
wcloseall CXL Lib
wgetchf CXL Lib
whelpcat CXL Lib
winpbeg CXL Lib
winpdef CXL Lib
winpread CXL Lib
wmenubeg CXL Lib
wmenuend CXL Lib
wmenuget CXL Lib
wimenuitem CXL Lib
wmessage CXL Lib
wopen CXL Lib

136

LIBRARY CALLS (CONTINUED):

wpickstr CXL Lib
wprintf CXL Lib
wprints CXL Lib
wputs CXL Lib
wreaderrs CXL Lib
wshadow CXL Lib
wtitle CXL Lib
PROGRAM CALLS:
Isn.exe
UTIL FUNCTIONS:

add_shadow
add_to_notebook
begin_Isn
confirm_quit
defnotebook
defprint
do_nothing
error_close_file
error_empty_ssn
error_exit
error_open_file
error_ssn
get_last_lIsn
information
interface_bar
introduction_bar
normal_exit
open_notebook
pick_algorithm
pickdef
pre_help
pre_pickl
press_a_key
quit

logic_lsn
Isn_bar

memory

top_bar
you_selected

137

COMPLETED: 4/12/90
PERSONS: Rick Howard

PURPOSE: Provides utility functions that both the dint.exe and Isn.exe
programs use.

**/

138

/* Constants */

#define CLR "x1B[2]"

#define NBYTES 128

#define SSNSIZE 15

#define LSN_LENGTH_SIZE 20
#define LSN_NAME_SIZE 20
#define LSN_PAGE_NUM_SIZE 5
#define TRUE |

#define FALSE 0

/¥

/* function prototypes */

static void add_shadow(void);
static void add_to_notebook(void);
static void begin_lsn(void);

static void confirm_quit(void);
static void defnotebook(void);
static void defprint(void);

static void do_nothing(void);

static void error_close_file(char name[12));
static void error_empty_ssn(void);
static void error_exit(int errnum);
static void error_open_file(char name[12]);
static void error_ssn(void);

static void get_last_lsn(void),
static void information(void);
static void interface_bar(void);
static void introduction_bar(void);
static void normal_exit(void);
static void open_notebook(void);
static void pick_algorithm(void),
static void pickdef(void);

static void pre_help(void);

static void pre_pick1(void);

static void press_a_key(int wrow);
static void quit(void);

static void logic_lsn(void);

static void Isn_bar(void);

static void memory(void);

static void top_bar(void);

static void you_selected(char *str);

139

*/

/* Globals */

static char *error_text[]= |
NULL, /* ermum = (), no error */
NULL, /* ermum == 1, windowing error */
"error”
"Can not find the notebook”

140

*/

A e stk s s e s o e ot ok sk e sk s s sk ok kst st sk s s s s s ke ok sl sk sk e s e sk ok ok e ok s sk ik s s s e o ok sk ok stk e s e s o e

******************#***/

FUNCTION :
CALLED BY:

CALLS

MODIFIED :

PERSON

PURPOSE :

add_shadow
begin_lsn
confinn_quit
defnotebook
error_close_file
error_empty_ssn
error_open_file
error_ssn
exams

get_ssn
information
logic_exam
notebook
open_notebook
open_title_wind
pickdef
pre_help
pre_menul
pre_pickl
print_notebook
quit_menu
quit_menu
tools
view_notebook
wshadow
4/12/90

Rick Howard

This function will add a shadow to the active window

static void add_shadow(void)

{
)

wshadow(LGREYI_BLACK);

in util.h

in util.h
in util.h

in util.h

in util.h

in util.h

in util.h

in dmt.exe
in Isn.exe
in util.h

in dmt.exe
in dint.exe
in util.h

in dmt.exe
in util.h

in utilL.h

in dmt.exe
in util.h

in dmt.exe
in dint.exe
in Isn.exe
in dimt.exe
in dint.exe

141

/**

FUNCTION : add_to_notebook
CALLED BY: defnotebook in util.h
CALLS fopen
error_open_{file
retumn
fprintf
getc
putc
fclose
error_close_file
MODIFIED : 4/12/90
PERSON . Rick Howard
PURPOSE : This function retrieves a file name and appends the file to

the notebook

**/

static void add_to_notebook()

{

intc; /* Holds the character values that are transfered from the
user’s selected definition to his notebook file */
FILE *f; /* Pointer to the user’s selected file */
/*
Get the name of the user’s notebook.
*/

open_notebook();

142

/*
Based on the user’s selected defintion, append that definition
file to the user's notebook.

*/

switch (definitions[def_number][0]){

case GRAPH :
{
if ((f = fopen("graph.def”, "r")) == NULL)
{
error_open_file("gaph.def");
retum;
}
fprintf(current_notebook,\n\n");
while((c = getc(f)) != EOF) putc(c,current_notebook);
if (fclose(f) == EOF)
error_close_file("graph.def");
break;
)
default :
break;
)
if (fclose(current_notebook) == EOF)
error_close_file(notebook_name);

143

ekttt detettolokotodesdetolosk ol ook ookl etk ekt etk skl stotole e ok etk e

FUNCTION : begin_Isn
CALLED BY: initialize in dmt.exe
main - in Isn.exe
CALLS : wmenubeg
wmenuitem
wmenuend
wmenuget
error_exit
whelpcat
MODIFIED : 4/12/90
PERSON : Rick Howard
PURPOSE : Displays the Begin menu

**/

static void begin_Isn (void)

{

int selection; /* The user’s menu choice */

wmenubeg(2,3,5,25,0,YELLOWI_BLUE,YELLOW!_BLUE,add_shadow);
wmenuitem(0,0,"Start a Lesson",’S’,20,0,do_nothing,0,H_START_LSN);

wmenubeg(6.3,8,9,0,YELLOWI_BLUE,YELLOWI_BLUE,add_shadow);
wmenuitem(0,0,"Logic",’L’,31,M_CLOSE,logic_lsn,0,H_LOGIC);
wmenuend(31,M_PDIM_SAVE 0,1, YELLOWI_BLUE,

LCYANI_ BLUE,0,YELLOW!_LGREY);

wmenuitem(1,0,"Return to Last Lesson",’R’,21, M_CLOSE,
get_last_Isn,0,H_RETURN_TO_LAST_LSN);
wmenuend(20,M_PDIM_SAVE,0,1,YELLOWI_BLUE,
LCYAN!_BLUE,0,YELLOWI_LGREY);

selection=wmenuget(),

if(selection==-1& & _winfo.ermo>W_ESCPRESS) error_exit(1);
whelpcat(H_USER_INTERFACE);

144

/**

FUNCTION :
CALLED BY:

CALLS

MODIFIED :

PERSON

PURPOSE :

confirm_quit

initialize in dmt.exe
quit_menu in dmt.exe
pre_help in util.h
press_a_key in util.h
chgonkey

wopen

error_exit

add_shadow

wputs

clearkeys

showcurs

wgetchf

normal_exit

wclose

hidecurs

wprintf

4/12/90

Rick Howard

This function pops open a window and confirms that the user
really wants to quit the demo. If so, it terminates
the demo program.

**/

static void confirm_quit(void)

{

struct _onkey_t *kblist; /* Pointer to the list of active hot-keys */

/*

Set a pointer to the hot-key listfor future reference and
disable all the hot keys.

*/

kblist=chgonkey(NULL);,

145

/*
Open the message window.
*/
if('wopen(9,26,13,55,0,WHITEI_BROWN,WHITEI_BROWN)) error_exit(1);
add_shadow(),
wputs("\n Quit DMT, are you sure? \)33A\I 56 Y\b");
clearkeys();
showcur();

¥
If the user wants to exit, terminate the program. If not,
reactivate the hoy-key list and close the window.

*/

if(wgetchf("YN",”Y’)=="Y") normal_exit();

wclose();

hidecur();

chgonkey(kblist);

wprintf("%d\n", coreleft());

146

/**

FUNCTION :
CALLED BY:
CALLS

MODIFIED :
PERSON :
PURPOSE :

defnotebook

pickdef in utilL.h
wmenubeg

wmenuitem

wmenuend

wmenuget

error_exit

4/12/90

Rick Howard

Displays the Notebook menu

#***/

static void defnotebook(void)

int choice; /* The user’s menu choice */

wmenubeg(18.25,21,52,0,YELLOWI_BLUE,YELLOWI_BLUE,add_shadow);

wmenuitem(0,0,"Add Definition to Notebook",’A’,20,M_CLOSE,
add_to_notebook,0,0);

wmenuitem(1,0,"Print Definition",’P’,21 M_CLOSE defprint,0,0);

wmenuend(20,M_VERT.0,0,YELLOW!_BLUE,

LCYANI_BLUE,0,YELLOWI_LGREY):

choice = wmenuget();
if(choice == -1 && _winfo.ermo> W_ESCPRESS) error_exit(1);

147

/**

FUNCTION : defprint

CALLED BY: defnotebook in util.h

CALLS : spawnl

MODIFIED : 4/12/90

PERSON : Rick Howard

PURPOSE : Sends the user selected definition file to the program

print.exe for printing

****************************#***************************************#*/

static void defprint(void)

{
switch (definitions[def_number}[0]){

case GRAPH :
spawnl(P_WAIT,"print.exe", "print.exe”, "graph.def”, NULL),
break;

default :
break;
)
)

148

/****#***

FUNCTION : do_nothing
CALLED BY: quit_menu in dmt.exe
tools in dint.exe
quit_menu in Isn.exe
begin_lsn in util.h
information inutil.h
CALLS : NONE
MODIFIED : 4/12/90
PERSON : Rick Howard
PURPOSE : This function is used as a dummy function for

several menu items in the pull-down demo

**/

static void do_nothing(void)
{
)

149

/**#********

FUNCTION :
CALLED BY:
CALLS

MODIFIED :
PERSON :
PURPOSE :

error_close_file

add_to_notebook in dmt.exe

wopen

error_exit

add_shadow

wprintf

wclose

4/12/90

Rick Howard

Error message if the system can not properly close a file

stk kR ook sk oKk skl Bk otk ool ot Rk Rk kR ok ok ok ok ok |

static void error_close_file(char name[12])

{

if ('wopen(15,24,19,57,0, WHITEI_CYAN,WHITE!_CYAN)) error_exit(1);

add_shadow();

wprintf('"\n
wprintf("\n

wprintf("\n \n

Can not close file");

%s "', name);

Press Esc to Continue™);

wgetchf("’033°", 0);

wclose();

150

/**

FUNCTION : error_empty_ssn
CALLEDBY: . find_card in link.c
CALLS : wopen

error_exit

wtitle

add_shadow

wprints

wgetchf

wclose
MODIFIED : 4/12/90
PERSON : Rick Howard
PURPOSE : Error message when the user attempts to continue a lesson

and there exists no students in the linked list

**/

static void error_empty_ssn(void)

{
if ('wopen(15.24,20,58,0, WHITEI_CYAN,WHITEI_CYAN)) error_exit(1);
wtitle("[Error Window]", TCENTER ,LGREENI_MAGENTA);
add_shadow();
wprints(1,3, BLINKIYELLOWI_BROWN,"No students are in the list");
wprints(3,7, YELLOWI_BROWN,"Press Esc to continue");
wgetchf("™N033""’Y"),
wclose();

151

/**

FUNCTION : error_exit

CALLED BY: begin_lsn in util.h
confirm_quit inutilL.h
defnotebook in util.h
error_close_file in util.h
error_empty_ssn inutil.h
error_open_file in util.h
error_ssn in util.h
exams in dmt.exe
get_ssn in link.c
information in util.h
logic_exam in dmt.exe
main in calc.exe
main in Isn.exe
main in table.exe
main_menu in dmt.exe
menudemo in dmt.exe
notebook in dmt.exe
open_back_wind in dmt.exe
open_notebook in util.h
open_titl_wind in dmt.exe
open_window in exam.exe
pickdef in util.h
print_notebook in dmt.exe
quit_menu in dmt.exe
quit_menu in Isn.exe
tools in dnt.exe
view_notebook in dmt.exe

CALLS wprintf
wernmsg
exit

MODIFIED : 4/12/90

PERSON : Rick Howard

PURPOSE : Displays an appropriate error message for known problems

*********#***/

static void error_exit(int errnum)
{
if(errnum) {
wprintf("\n%s\n" (ermum==1)?werrmsg():error_text{ermum]);
exit(ermum);
)
)

/**

FUNCTION :
CALLED BY:

CALLS

MODIFIED :
PERSON :
PURPOSE :

error_open_file

print_notebook in dmt.exe
view notebook in dmt.exe
add_to_notebook in util.h
wopen

error_exit

add_shadow

wprintf

wgetchf

wclose

4/12/90

Rick Howard

Error messagee if the system can not properly open a file

**/

static void error_open_file(name)

char name([12];

{

if ('wopen(15,24,16,57,0, WHITE|_CYAN,WHITE|_CYAN)) error_exit(1);

add_shadow();
Can not open file");

wprintf("
wprintf('"\n
wprintf("\n

%s "', name);

Press Esc to continue");

wgetchf("™N033'",’Y");

wclose();

/**

FUNCTION :
CALLED BY:
CALLS

MODIFIED :
PERSON :
PURPOSE :

error_ssn
get_last_lsn in util.h

wopen

error_exit

add_shadow

wprints

wtitle

wgetchf

wclose

4/12/90

Rick Howard

Error message if the user chosen ssn is not in the student
linked list

**/

static void error_ssn(void)

{

if ('wopen(15.24,20,58,0, WHITEI_CYAN,WHITEI_CYAN)) error_exit(1);
wtitle("[Error Window ", TCENTER,LGREENI_MAGENTA);

add_shadow();

wprints(1,7, BLINKIYELLOWI_BROWN,"Can not find that SSN");
wprints(3,7, YELLOWI_BROWN,"Press Esc to continue");
wgetchf("N033"",’Y");

wclose();

155

/**

FUNCTION get_last_lsn
CALLED BY: begin_Isn in util.h
CALLS whelpcat
initialize linked_list
find_card
error_ssn
MODIFIED : 4/12/90
PERSON : Rick Howard
PURPOSE : Reads the student linked list in from a file and looks

for a specific ssn

***/

static void get_last_lsn(void)

{

char *ARGSI3]; /* Placeholder for the function: find_card */

int page; /* Indicates # of students in the linked list */

int start_lsn = TRUE; /* This function is always executed at the
when the user begins a lesson */

whelpcat(H_SSN);
initialize_linked_list();
page = find_card(ARGS[1], ARGS[2], page, start_lsn);

if (page == 0){
error_ssn();
retum,;

)
)

156

[t R skt ok e e ek ol ol el ok Aok ol ot et ok sk ofe ol ol ik kol ot ok Ak ok s ok ok ok sk sk

FUNCTION : information
CALLED BY: initialize in dmt.exe
initialize in Isn.eve
CALLS whelpcat
winenubeg
wmenuitem
wmenuend
wmenuget
error_exit
MODIFIED : 4/12/90
PERSON : Rick Howard
PURPOSE Defines the information menu structure

**/

static void information(void)

{

int selection; /* The user’s menu choice */

wmenubeg(2.13,6,26,0, YELLOWI_BLUE,YELLOWI_BLUE,add_shadow);
wmenuitem(0,0,"Definitions",”D’,40 M_CLOSE,pickdef ,0,H_DEFINITIONS);
wmenuitem(1,0,"Examples”,’E’ ,41,0,do_nothing,0, H_EXAMPLES);
wmenuitem(2,0,"Theorems",”T’,42,0,do_nothing,0,H_THEOREMS);
wmenuend(40,M_PDIM_SAVE 0,1, YELLOWI_BLUE,
LCYANI_BLUE,0,YELLOWI|_LGREY);

selection=wmenuget();
if(selection==-1& & _winfo.ermo>W_ESCPRESS) error_exit(1);
whelpcat(H_USER_INTERFACE);

157

/**

FUNCTION : interface_bar
CALLED BY: menudemo in dmt.exe
CALLS : wopen
wprints
MODIFIED : 4/12/90
PERSON : Rick Howard
PURPOSE : Displays the bottom screen help bar for the dmt interface

.**/

static void interface_bar(void)
{

char help[]="H-Help";

char exit[|="ESC-Back up";

wopen(24,0.25,79,5,YELLOWI_BLUE,YELLOWI|_BLUE),

wprints(0,1,LCYANI_BLUE help);
wprints(0,68,LCY ANI_BLUE,exit);

158

/**

FUNCTION : introduction_bar
CALLED BY: main in dmt.exe
CALLS : wopen
wprints
MODIFIED : 4/12/90
PERSON : Rick Howard
PURPOSE : Displays the bottom screen help bar for the introduction

screen to the dint interface

**/

static void introduction_bar(void)
{

char help[}="H-Help";

char exit| |="ESC-Quit";

wopen(24,0,25,79,5, YELLOWI_BLUE,YELLOWI_BLUE);
wprints(0,1, LCYANI_BLUE help);
wprints(0,72 LCYANI_BLUEexit);

/**

FUNCTION :
CALLED BY:

CALLS

MODIFIED :
PERSON :
PURPOSE :

normal_exit

main in dint.exe

confirm_quit in dmt.exe

srestore

gotoxy

showcur

exit

4/12/90

Rick Howard

This function handles normal termination. The original
screen and cursor coordinates are restored before exiting
to DOS with ERRORLEVEL 0.

***/

static void normal_exit(void)

{

srestore(savescm);

gotoxy_(crow,ccol);

showcur();
exit(0);

160

[k ek Rk sk R R Rk ko R ks R okt de ettt el ok s el

FUNCTION : open_notebook
CALLED BY: add_to_notebook in dmt.exe
CALLS : chgonkey

wopen

error_exit

add_shadow

wtitle

winpbeg

wprints

winpdef

winpread

wputs

wgetchf

wclose

findfirst

strcmp

fopen

hidecurs

error_exit
MODIFIED : 4/12/90
PERSON : Rick Howard
PURPOSE : Asks the user for his notebook name and sets the variable

current_notebook = to it.

***/

static void open_notebook()

{

struct ffblk ffblk; /* Place holder for the function findfirst */
struct _onkey_t *k|; /* Pointer to current hot-key list ~ */
int done; /* Indicates if the function findfirst
found the user’s notebook name in the
current directory */

static char file_operation; /* Indicates if the user wants to append
to an existing notebook file or
create another one */

register int response; /* The user’s response */

161

/*
Assign the current hot key list to k1 and set the current hot
key list to NULL.

*/
k1 =chgonkey(NULL),
/*
Open a window to retrieve the user’s notebook name.
*/

if(!wopen(10,8,17,70,1 LCYANI_BLUE, LCYANI_BLUE)) error_exit(1);
add_shadow();
wtitle("[Name Y our Personalized Notebook]”, TLEFT, LCYANI|_BLUE);

/* Display prompts and define fields. */
do{
winpbeg(LGREENI_LGREY ,WHITE|_LGREY);

wprints(1, 3, WHITEI_BLUE, "What is your Notebook Name?");

winpdef(1, 35, notebook_name, "WWWWWWWWWWWW" 0,0NULL,0),
wprints(3. 3, WHITE!_BLUE, "(A)ppend or (O)verwrite:");

winpdef(3. 35, file_operation, "<AaOo>",0,0,NULL,0) ;

/*

Mark end of form and process it.
*/
if(winpread()) break;

if (‘'wopen(15,24,19,57,0, WHITE|_CYAN,WHITEI_CYAN)) error_exit(1);
add_shadow();

wputs("™\n Is this information correct? \033AN076 Y\b"),

response = wgetchf("YN","Y"),

wclose();

)

while (response !="'Y");

/*

Re-enable the hot-key list.
*/
chgonkey(kl):

/*

162

Look for the user’s notebook file in the current directory.
*/
done = findfirst(notebook_name, &ffblk, 0);

/*
If the file is found and the user wishes to append to it, open the
file appropriately. If the file is not found or the user wishes to
overwrite it, open it appropriately.

*/

if (done == ()
if ((stcemp(file_operation,"A") == 0) i

(strcmp(file_operation,"”a") == 0))
current_notebook = fopen(notebook_name,

"a";
else

current_notebook = fopen(notebvok_name, "w+t");
else

current_notebook = fopen(notebook_name, "w+t");

wclose();
hidecur();

163

/********#**

FUNCTION : pickdef
CALLED BY: information in dint.exe
CALLS wopen
error_exit
add_shadow
whelpcat
wprintf
wpickstr
pre_pickl
you_selected
defnotebook
MODIFIED : 4/12/90
PERSON : Rick Howard
PURPOSE : Allows the user to choose a definition from a list of
definitions and add it to his personalized notebook

**/

static void pickdef(void)
{
int def_number; /* Indicates the array placement of the user
chosen definition */

/*
OPen a window for the definition choices.
*/
if('wopen(10,11,17,68,3 LMAGENTAI_RED,LREDI_MAGENTA)) error_exit(1);
add_shadow():
whelpcat(H_SELECT),
wprintf("\033R\NO01ND33C\003Select a definition =>\033R\001\)33C\003");

/*
Allow the user to choose a definition.
*/
def_number = wpickstr(6,32,11,-1,0,
LGREENI_RED,LCYAN! RED,REDI_LGREY,
definitions,0,pre_pick1);

164

/*
Show the user the definition he chose.
*/

you_selected(definitions[def_number]);

/*
Give the user the option to add the definition to the notebook or
print it out.

*/

defnotebook().

wclose();

165

/**

FUNCTION :
CALLED BY:

CALLS
MODIFIED :

PERSON :
PURPOSE :

pre_help

initialize in dmt.exe
main in Isn.exe
add_shadow

setonkey

4/12/90

Rick Howard

Adds a shadow to all help screens

***/

static void pre_help(void)

{
)

add_shadow().

/**#*********

FUNCTION :
CALLED BY:
CALLS

MODIFIED :
PERSON :
PURPOSE :

pre_pickl

pickdef in util.h

wmessage

add_shadow

4/12/90

Rick Howard

Sets up the window for shadow and borders

***/

static void pre_pick1(void)

wmessage("? 7", BT_BORD,4,LGREEN!_RED);

add_shadow();

)

166

/**************<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>